Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Pharm Des ; 17(5): 489-507, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21375482

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. Classically, PD is considered to be a motor system disease and its diagnosis is based on the presence of a set of cardinal motor signs that are consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta (SNc). Nowadays there is considerable evidence showing that non-dopaminergic degeneration also occurs in other brain areas which seems to be responsible for the deficits in olfactory, emotional and memory functions that precede the classical motor symptoms in PD. Dopamine-replacement therapy has dominated the treatment of PD and although the currently approved antiparkinsonian agents offer effective relief of the motor deficits, they have not been found to alleviate the non-motor features as well as the underlying dopaminergic neuron degeneration and thus drug efficacy is gradually lost. Another major limitation of chronic dopaminergic therapy is the numerous adverse effects such as dyskinesias, psychosis and behavioral disturbance. The development of new therapies in PD depends on the existence of representative animal models to facilitate the evaluation of new pharmacological agents before they are applied in clinical trials. We have recently proposed a new experimental model of PD consisting of a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 1 mg/nostril) in rodents. Our findings demonstrated that rats and mice treated intranasally with MPTP suffer impairments in olfactory, cognitive, emotional and motor functions conceivably analogous to those observed during different stages of PD. Such infusion causes time-dependent loss of tyrosine hydroxylase in the olfactory bulb and SNc, resulting in significant dopamine depletion in different brain areas. We have also identified some pathogenic mechanisms possibly involved in the neurodegeneration induced by i.n. administration of MPTP including mitochondrial dysfunction, oxidative stress, activation of apoptotic cell death mechanisms and glutamatergic excitotoxicity. Therefore, the present review attempts to provide a comprehensive picture of the i.n. MPTP model and to highlight recent findings from our group showing its potential as a valuable rodent model for testing novel drugs that may provide alternative or adjunctive treatment for both motor and non-motor symptoms relief with a reduced side-effect profile as well as the discovery of compounds to modify the course of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Intoxicação por MPTP/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Humanos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/psicologia , Fármacos Neuroprotetores/farmacologia
2.
J Neural Transm (Vienna) ; 117(12): 1337-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20931248

RESUMO

We have recently demonstrated that rodents treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) suffered impairments in olfactory, cognitive and motor functions associated with time-dependent disruption of dopaminergic neurotransmission in different brain structures conceivably analogous to those observed during different stages of Parkinson's disease (PD). On the other hand, the proanthocyanidin-rich fraction (PRF) obtained from the bark of Croton celtidifolius Baill (Euphorbiaceae), a tree frequently found in the Atlantic forest in south Brazil, has been described to have several neurobiological activities including antioxidant and anti-inflammatory properties, which may be of interest in the treatment of PD. The present data indicated that the pretreatment with PRF (10 mg/kg, i.p.) during five consecutive days was able to prevent mitochondrial complex-I inhibition in the striatum and olfactory bulb, as well as a decrease of the enzyme tyrosine hydroxylase expression in the olfactory bulb and substantia nigra of rats infused with a single intranasal administration of MPTP (1 mg/nostril). Moreover, pretreatment with PRF was found to attenuate the short-term social memory deficits, depressive-like behavior and reduction of locomotor activity observed at different periods after intranasal MPTP administration in rats. Altogether, the present findings provide strong evidence that PRF from C. celtidifolius may represent a promising therapeutic tool in PD, thus being able to prevent both motor and non-motor early symptoms of PD, together with its neuroprotective potential.


Assuntos
Croton/química , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Administração Intranasal , Animais , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Proantocianidinas/uso terapêutico , Ratos , Ratos Wistar
3.
Neurotox Res ; 17(2): 114-29, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19629612

RESUMO

Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson's disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.


Assuntos
Intoxicação por MPTP , Neurotoxinas/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Administração Intranasal , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Inibição Psicológica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuroquímica , Neurotoxinas/administração & dosagem , Transtornos do Olfato/etiologia , Doença de Parkinson Secundária/complicações , Doença de Parkinson Secundária/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Neurochem Res ; 33(5): 729-36, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17940892

RESUMO

The aim of this study was to analyze the effects of intense exercise on brain redox status, associated with antioxidant supplementation of N-acetylcysteine (NAC), deferoxamine (DFX) or a combination of both. Seventy-two C57BL-6 adult male mice were randomly assigned to 8 groups: control, NAC, DFX, NAC plus DFX, exercise, exercise with NAC, exercise with DFX, and exercise with NAC plus DFX. They were given antioxidant supplementation, exercise training on a treadmill for 12 weeks, and sacrificed 48 h after the last exercise session. Training significantly increased (P < 0.05) soleus citrate synthase (CS) activity when compared to control. Blood lactate levels classified the exercise as intense. Exercise significantly increased (P < 0.05) oxidation of biomolecules and superoxide dismutase activity in striatum and hippocampus. Training significantly increased (P < 0.05) catalase activity in striatum. NAC and DFX supplementation significantly protected (P < 0.05) against oxidative damage. These results indicate intense exercise as oxidant and NAC and DFX as antioxidant to the hippocampus and the striatum.


Assuntos
Acetilcisteína/farmacologia , Corpo Estriado/efeitos dos fármacos , Desferroxamina/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Animais , Catalase/metabolismo , Corpo Estriado/enzimologia , Hipocampo/enzimologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA