Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 185: 390-400, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35785551

RESUMO

Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.


Assuntos
COVID-19 , Camellia sinensis , Catequina , Antocianinas/metabolismo , Cafeína , Camellia sinensis/metabolismo , Catequina/metabolismo , Humanos , Folhas de Planta/metabolismo , Polifenóis/metabolismo , SARS-CoV-2 , Chá
2.
New Phytol ; 233(4): 1900-1914, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839530

RESUMO

Light quality affects mutualisms between plant roots and arbuscular mycorrhizal fungi (AMFs), which modify nutrient acquisition in plants. However, the mechanisms by which light systemically modulates root colonization by AMFs and phosphate uptake in roots remain unclear. We used a range of approaches, including grafting techniques, protein immunoblot analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, and dual-luciferase assays, to unveil the molecular basis of light signal transmission from shoot to root that mediates arbuscule development and phosphate uptake in tomato. The results show that shoot phytochrome B (phyB) triggers shoot-derived mobile ELONGATED HYPOCOTYL5 (HY5) protein accumulation in roots, and HY5 further positively regulates transcription of strigolactone (SL) synthetic genes, thus forming a shoot phyB-dependent systemic signaling pathway that regulates the synthesis and accumulation of SLs in roots. Further experiments with carotenoid cleavage dioxygenase 7 mutants and supplementary red light confirm that SLs are indispensable in the red-light-regulated mycorrhizal symbiosis in roots. Our results reveal a phyB-HY5-SLs systemic signaling cascade that facilitates mycorrhizal symbiosis and phosphate utilization in plants. The findings provide new prospects for the potential application of AMFs and light manipulation to effectively improve nutrient utilization and minimize the use of chemical fertilizers and associated pollution.


Assuntos
Micorrizas , Solanum lycopersicum , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Solanum lycopersicum/genética , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Simbiose
3.
Plant Physiol Biochem ; 166: 78-87, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34090123

RESUMO

Phosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes. Soil P deficiency is one of the major limiting factors for sustainable crop production worldwide. Previous studies have demonstrated that silicon (Si), as a beneficial element, promotes plant nutrition, growth, development, and responses to low P (LP) stress; however, the molecular mechanisms underlying Si-mediated LP tolerance remain largely unclear. Here, we found that LP + Si treatment increased the net photosynthetic rate and shoot fresh weight by 34.3%, and 121.3%, respectively compared with LP alone. RNA-sequencing and metabolomic analyses were subsequently performed with tomato plants grown under control and P depleted conditions with or without Si amendment. RNA-sequencing showed that Si supply alters not only the expression of genes involved in the metabolism of carbon (C), nitrogen (N), and P but also phosphorylation processes and metabolism of glutathione and reactive active oxygen in tomato roots. Si also affected the expression of genes encoding major transcription factors such as WRKY and MYB under LP stress. Moreover, a set of genes encoding the enzymes or regulators of organic acid (OA) metabolism or secretion were differentially expressed in Si-treated P deficient roots compared with those in LP stress alone. Furthermore, the metabolomic analysis showed that the levels of several OAs were significantly elevated in Si-treated P deficient roots. Taken together, these results indicate that exogenous Si increases the secretion of OAs by modulating C/N metabolism in LP-treated tomato roots and thereby improving plant growth under LP stress.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Fósforo , Raízes de Plantas/genética , Silício/farmacologia , Transcriptoma
4.
J Hazard Mater ; 403: 123922, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264973

RESUMO

Arsenic is a toxic metalloid for both animals and plants. The signaling molecule melatonin can enhance abiotic stress tolerance, but the effects of As and melatonin on tea plants and the mechanisms of resilience remain unclear. Here we report that excess As causes severe oxidative stress in tea leaves as revealed by significantly reduced maximal photochemical efficiency of photosystem-II, and increased reactive oxygen species accumulation and lipid peroxidation. However, exogenous melatonin application alleviated the As phytotoxicity and increased the anthocyanin content upto 69.4 % by selectively upregulating the expression of its biosynthetic genes such as CsCHS and CsANS. Comparison of As tolerance between two tea genotypes differing in basal levels of anthocyanin revealed that a tea cultivar with increased anthocyanin content, Zijuan (ZJ), showed enhanced tolerance to As stress compared with Longjing 43 (LJ43) that contained relatively low levels of anthocyanin. Interestingly, exogenous anthocyanin also enhanced As tolerance in LJ43, but exogenous melatonin did not improve As tolerance in ZJ genotype. Analysis of As content in tea leaves revealed that melatonin significantly reduced As content in LJ43 but not in ZJ, suggesting that melatonin-enhanced tolerance to As stress is largely dependent on the basal levels of anthocyanin in tea plants.


Assuntos
Arsênio , Camellia sinensis , Melatonina , Antocianinas , Antioxidantes , Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
5.
J Plant Physiol ; 253: 153273, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927134

RESUMO

Global warming has multifarious effects on crop growth and productivity. Nonetheless, the effects of moderate-high temperatures and melatonin on tea yield and quality remain unclear. In this study, we found that melatonin, a universal growth stimulatory molecule, not only promotes photosynthesis and biomass accumulation in tea plants (Camellia sinensis L.) but also improves tea quality under sub high temperature (SHT). SHT increased the dry biomass and photosynthesis by 40.8% and 28.1%, respectively, and exogenous melatonin caused a further improvement. Moreover, SHT increased the total polyphenol concentrations and decreased the free amino acid concentrations, leading to a significant increase (68.2%) in polyphenol to free amino acid ratio. However, melatonin decreased the polyphenol to free amino acid ratio by delicately improving the concentrations of polyphenols and amino acids. Consistent with the total polyphenol, melatonin increased the concentrations of (-)-catechin, (-)-gallocatechin (GC), and (-)-epigallocatechin-3-gallate (EGCG) in tea leaves. The qRT-PCR analysis revealed that melatonin increased the transcript levels of catechins biosynthesis genes, such as CsCHS, CsCH1, CsF3H, CsDFR, CsANS, CsLAR, and CsANR under SHT. Meanwhile, the theanine concentration was decreased by SHT, which was attributed to the attenuated expression of CsGS, CsGOGAT, CsGDH, and CsTS1. Nonetheless, melatonin significantly increased those transcripts and the content of theanine under SHT. Melatonin also increased the caffeine content by inducing the expression of CsTIDH, CssAMS, and CsTCS1. These results suggest that melatonin could positively alter tea growth and quality by modulating the photosynthesis and biosynthesis of polyphenols, amino acids, and caffeine in tea leaves under SHT.


Assuntos
Camellia sinensis/efeitos dos fármacos , Catequina/análogos & derivados , Glutamatos/biossíntese , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Catequina/biossíntese , Clima , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Chá/efeitos dos fármacos , Chá/normas , Temperatura
6.
PLoS One ; 14(5): e0211441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095573

RESUMO

Arsenic (As) is a carcinogenic and hazardous substance that poses a serious risk to human health due to its transport into the food chain. The present research is focused on the As transport in different lentil genotypes and the role of Arbuscular Mycorrhizal Fungi (AMF) in mitigation of As phyto-toxicity. Arsenic transport from soil to root, shoot and grains in different lentil genotypes was analyzed by flow injection hydride generation atomic absorption spectrophotometry. AMF were applied for the reduction of As uptake as well as the improvement of plant growth in lentil genotypes. Arsenic phyto-toxicity was dose-dependent as evidenced by relatively higher shoot length, fresh and dry weight of root and shoot in 5 and 15 mgkg-1 As-treated lentil plants than that in 100 mgkg-1 As-treated lentil. Arsenic accumulation occurred in roots and shoots of all BARI-released lentil genotypes. Arsenic accumulation in grains was found higher in BARI Mashur 1 than other lentil genotypes. AMF treatment significantly increased growth and biomass accumulation in lentil compared to that in non-AMF plants. Furthermore, AMF effectively reduced the As concentrations in roots and shoots of lentil plants grown at 8 and 45 mgkg-1 As-contaminated soils. This study revealed remarkable divergence in As accumulation among different BARI-released lentil genotypes; however, AMF could reduce As uptake and mitigate As-induced phyto-toxicity in lentil. Taken together, our results suggest a great potential of AMF in mitigating As transfer in root and shoot mass and reallocation to grains, which would expand lentil cultivation in As-affected areas throughout the world.


Assuntos
Arsênio/metabolismo , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/metabolismo , Micorrizas/fisiologia , Biodegradação Ambiental , Genótipo , Lens (Planta)/microbiologia , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Poluentes do Solo/metabolismo
7.
Molecules ; 24(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669582

RESUMO

The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.


Assuntos
Flavonoides/biossíntese , Redes e Vias Metabólicas , Folhas de Planta/metabolismo , Propanóis/metabolismo , Salicilatos/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/efeitos dos fármacos , Folhas de Planta/genética , Salicilatos/farmacologia , Chá/genética , Transcrição Gênica
8.
Sci Rep ; 8(1): 10182, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976982

RESUMO

Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.


Assuntos
Homeostase/efeitos dos fármacos , Melatonina/administração & dosagem , Solanum lycopersicum/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Enxofre/deficiência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solo/química
9.
Sci Rep ; 7(1): 7937, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801632

RESUMO

Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol-1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Camellia sinensis/metabolismo , Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Chá/química , Cafeína/análise , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/genética , Carbono/análise , Catequina/análise , Respiração Celular/efeitos dos fármacos , Qualidade dos Alimentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitrogênio/análise , Proteínas de Plantas/genética , Amido/análise , Chá/efeitos dos fármacos
10.
J Plant Physiol ; 214: 145-151, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28482335

RESUMO

Flavonoids are one of the key secondary metabolites determining the quality of tea. Although exogenous brassinosteroid (BR), a steroidal plant hormone, can stimulate polyphenol biosynthesis in tea plants (Camellia sinensis L.), the relevance of endogenous BR in flavonoid accumulation and the underlying mechanisms remain largely unknown. Here we show that BR enhances flavonoid concentration in tea leaves by inducing an increase in the endogenous concentration of nitric oxide (NO). Notably, exogenous BR increased levels of flavonoids as well as NO in a concentration dependent manner, while suppression of BR levels by an inhibitor of BR biosynthesis, brassinazole (BRz), decreased the concentrations of both flavonoids and NO in tea leaves. Interestingly, combined treatment of BR and BRz reversed the inhibitory effect of BRz alone on the concentrations of flavonoids and NO. Likewise, exogenous NO also increased flavonoids and NO levels dose-dependently. When the NO level in tea leaves was suppressed by using a NO scavenger, 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), flavonoid concentration dramatically decreased. Although individual application of 0.1µM BR increased the concentrations of flavonoids and NO, combined treatment with exogenous NO scavenger, cPTIO, reversed the effect of BR on flavonoid concentration. Furthermore, BR or sodium nitroprusside (SNP) promoted but cPTIO inhibited the transcription and activity of phenylalanine ammonia-lyase (PAL) in leaves, while combined treatment of BR with SNP or cPTIO had no additive effect. The results of this study suggest that an optimal level of endogenous NO is essential for BR-induced promotion of flavonoid biosynthesis in tea leaves. In conclusion, this study unveiled a crucial mechanism of BR-induced flavonoid biosynthesis, which might have potential implication in improving the quality of tea.


Assuntos
Brassinosteroides/farmacologia , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Óxido Nítrico/metabolismo , Benzoatos/farmacologia , Camellia sinensis/efeitos dos fármacos , Imidazóis/farmacologia , Fenilalanina Amônia-Liase/metabolismo
11.
Phytopathology ; 106(11): 1270-1277, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27392179

RESUMO

Caffeine, the major purine alkaloid in tea has long been known for its role in plant defense. However, its effect on Colletotrichum gloeosporioides that causes brown blight disease in tea is largely unknown especially under elevated CO2. Here we show that elevated CO2 reduced endogenous caffeine content in tea leaves, but sharply increased susceptibility of tea to C. gloeosporioides. The expression of C. gloeosporioides actin gene was gradually increased during the postinoculation period. In contrast, foliar application of caffeine decreased the C. gloeosporioides-induced necrotic lesions and the expression of C. gloeosporioides actin. Analysis of endogenous jasmonic acid (JA) content revealed that exogenous caffeine could induce JA content under both CO2 conditions in absence of fungal infection; however, in presence of fungal infection, caffeine increased JA content only under elevated CO2. Furthermore, exogenous caffeine enhanced lipoxygenase (LOX) activity and its biosynthetic gene expression under both CO2 conditions, indicating that increased JA biosynthesis via LOX pathway by caffeine might strengthen plant defense only under elevated CO2, while caffeine-induced defense under ambient CO2 might be associated with JA-independent LOX pathway in tea. These results provide novel insights into caffeine-induced plant defense mechanisms that might help to develop an eco-friendly approach for disease control.


Assuntos
Cafeína/farmacologia , Camellia sinensis/efeitos dos fármacos , Colletotrichum/patogenicidade , Ciclopentanos/metabolismo , Lipoxigenases/efeitos dos fármacos , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Cafeína/metabolismo , Camellia sinensis/imunologia , Camellia sinensis/microbiologia , Dióxido de Carbono/farmacologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Lipoxigenases/genética , Lipoxigenases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/imunologia , Plântula/microbiologia
12.
Plant Physiol Biochem ; 106: 327-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27380366

RESUMO

Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Aminoácidos/análise , Vias Biossintéticas , Cafeína/análise , Carboidratos/análise , Catequina/análise , Respiração Celular , Clorofila/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Polifenóis/metabolismo , Solubilidade , Amido/metabolismo
13.
J Pineal Res ; 61(3): 291-302, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27264631

RESUMO

Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.


Assuntos
Cádmio/farmacologia , Melatonina/metabolismo , Ácido Selênico/farmacologia , Selenocisteína/farmacocinética , Selenito de Sódio/farmacologia , Solanum lycopersicum/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Descarboxilases de Aminoácido-L-Aromático/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Selênio/farmacologia
14.
Front Plant Sci ; 6: 601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322055

RESUMO

Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H(+)-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA