Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 148: 102-109, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945445

RESUMO

Lysozyme amyloidosis (ALys) is caused by the deposition of amyloid-like fibrils of lysozyme in the tissues of the gastrointestinal tract, liver and kidneys. The treatment/prevention of ALys is not known yet. Therefore, searching for therapeutic agents for amyloidosis is of great value. In this study, we have examined the ability of the aqueous extract of herbalome (thirty herbal components) of Chandraprabha vati (EHCV), a polyherbal Ayurvedic formulation, to prevent fibrillation of lysozyme. Transmission electron microscopy and multiple biophysical techniques were used to examine the processes. We found complete inhibition of the fibrillation by EHCV, whereas none of the thirty ingredients of EHCV was able to prevent the reaction, solely. We also found the EHCV induced and stabilized secondary structures of aggregation-prone state (APS) of lysozyme. Moreover, an increase in the secondary structure and stability of APS were found to correlate with the inhibition reaction. We conclude that EHCV modulates the structure and stability of APS and converts it into an aggregation resistant state (ARS). We hypothesized that herbal components of Ayurvedic formulation may provide a combination of molecules, which could efficiently prevent aggregation reaction.


Assuntos
Amiloide/química , Amiloidose/enzimologia , Minerais/química , Muramidase/química , Extratos Vegetais/química , Agregados Proteicos/efeitos dos fármacos , Composição de Medicamentos , Proteínas do Ovo/química , Ayurveda , Plantas Medicinais , Estrutura Secundária de Proteína
2.
J Biochem ; 141(2): 251-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17172264

RESUMO

By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme.


Assuntos
Bromelaínas/química , Bromelaínas/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Dicroísmo Circular , Etanol/farmacologia , Fluorescência , Guanidina , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica , Dobramento de Proteína , Solventes/farmacologia , Relação Estrutura-Atividade , Ureia
3.
J Biochem ; 140(4): 501-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16921164

RESUMO

We report the accumulation of an acid unfolded (UA) state and a molten globule (MG) state in the acid induced unfolding pathway of unmodified preparation of stem bromelain (SB) [EC 3.4.22.32], a cystein protease from Ananas cosmosus. The conformation of SB was examined over the pH 0.8-3 regions by circular dichroism, tryptophanyl fluorescence, 1-anilino-8-naphthalenesulfonate (ANS) binding, and tryptophanyl fluorescence quenching study. The pH 0.8-3.0 regions were selected to study the acid induced unfolding of SB because no autolysis of the enzyme was observed in these pH regions. The results show that SB at pH 2.0 is maximally unfolded and characterizes by significant loss of secondary structure ( approximately 80%) and almost complete loss of tertiary contacts. However, on further decreasing the pH to 0.8 a MG state was observed, with secondary structure content similar to that of native protein but no tertiary structure. We also made a comparative study of these acid induced states of SB with acid induced states of modified stem bromelain (mSB), reported by our group earlier [Eur. J. Biochem. (2002) 269, 47-52]. We have shown that modification of SB for inactivation significantly affects the N-UA transition but neither affects the UA-MG transition nor the stability of the MG state.


Assuntos
Ananas/enzimologia , Bromelaínas/química , Proteínas de Plantas/química , Dobramento de Proteína , Naftalenossulfonato de Anilina/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Cinética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
4.
Biopolymers ; 81(5): 350-9, 2006 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-16345002

RESUMO

The effect of low, medium, and high molecular weight poly(ethylene glycol) (e.g., PEG-400, -6000, and -20,000) on the structure of the acid unfolded state of unmodified stem bromelain (SB) obtained at pH 2.0 has been studied by various spectroscopic methods. The conformation of stem bromelain at pH 2.0 exhibits substantial loss of secondary structure and almost complete loss of native tertiary contacts and has been termed the acid unfolded state (A(U)). Addition of PEG-400 to A(U) led to an increase in the mean residue ellipticity (MRE) value at 222 nm, indicating formation of alpha-helical structure. On the other hand, PEG-6000 and 20,000 led to a decrease in the MRE value at 222 nm, indicating unfolding of the A(U) state. Interestingly, at 70% (w/v) PEG-400 and 40% (w/v) PEG-20,000, MRE values at 222 nm almost approach the native state at pH 7.0 and the unfolded state (6 M GnHCl) of stem bromelain, respectively. The probes for tertiary structure showed formation of nonnative tertiary contacts in the presence of 70% (w/v) PEG-400, while 40% (w/v) PEG-6000 and 20,000 were found to stabilize the unfolded state of SB. An increase in binding of 1-anilino 8-naphthalene sulfonic acid and a decrease in fractional accessibility of tryptophan residues (f(a)) compared to A(U) in the presence of 70% PEG-400 indicate that the PEG-400-induced state has a significant amount of exposed hydrophobic patches and is more compact than A(U). The results imply that the PEG-400-induced state has characteristics of molten globule, and higher molecular weight PEGs led to the unfolding of the A(U) state.


Assuntos
Biopolímeros/química , Bromelaínas/química , Peso Molecular , Polietilenoglicóis/química , Acrilamida/química , Naftalenossulfonato de Anilina/química , Dicroísmo Circular , Estabilidade Enzimática , Etilenoglicol/química , Guanidina/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Espectrofotometria , Triptofano/química
5.
Int J Biochem Cell Biol ; 37(2): 361-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15474981

RESUMO

The effect of salts and alcohols was examined on the partially folded intermediate (PFI) state of stem bromelain reported at low pH (Haq, Rasheedi, and Khan (2002) European Journal of Biochemistry 269, 47-52) by a combination of optical methods like circular dichroism, intrinsic fluorescence and ANS binding. ESI mass spectrometry was also performed to see the effect, if any, on the overall tertiary structure of the protein. Increase in ionic strength by the addition of salts resulted in folded structures somewhat different from the native enzyme. Salt-induced intermediates are characterized by increase in helical content and a significantly reduced exposure of hydrophobic clusters relative to the state at pH 2.0. The emission wavelength maximum of intrinsic fluorescence was shifted towards that of native enzyme. ESI-MS data show decreased accessibility of ionizable/protonation sites suggestive of a folded structure. On the other hand, alcohol-induced intermediates though exhibiting increased helical content are apparently largely unfolded as observed by ESI. Thermal denaturation of a representative intermediate, each from the group of salts and alcohols examined, was also performed to check their relative stabilities. While the alcohol-induced state showed a cooperative thermal transition, the salt-induced state shows non-cooperative thermal denaturation.


Assuntos
Ananas/enzimologia , Bromelaínas/química , Proteínas de Plantas/química , Dobramento de Proteína , Álcoois/química , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica , Estrutura Secundária de Proteína , Sais/química , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA