Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28225, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545135

RESUMO

Geckos and their products have been used in Asian traditional medicine. Medicinal properties of desert-dwelling Gecko species, Crossobamon orientalis remain unexplored. In this study, natural bioactive macromolecules present in oil extracted from C. orientalis (COO) and their biological activities were evaluated. Chemical constitution of COO was explored by using gas chromatography mass spectrometry. Antioxidant, antiviral, and antibacterial activities of COO extracts were assessed using various assays, including DPPH free-radical-protocol, HET-CAM method, in ovo-antiviral technique, and disc-diffusion method. GC-MS study reported 40 different compounds in COO. n-hexane and methanol extracts of COO demonstrated highest DPPH radical inhibition, with values of 70 and 63.3%, respectively. Extracts of COO in solvents, namely 1-butanol, methanol, diethyl ether, and n-hexane significantly inhibited the proliferation of four pathogenic viruses. Maximum zone of inhibition was observed for Escherichia coli (13.65 ± 0.57 mm). These findings suggest that COO possesses potent antioxidant and antimicrobial properties against viral and bacterial strains, thanks to its biologically active components having no side effects. Further studies are essential to isolate and identify individual bioactive compounds present in COO and to investigate their potential as therapeutic agents.

2.
J Environ Manage ; 344: 118546, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418916

RESUMO

Biosynthesis of silver nanoparticles (AgNPs) by plant extracts and its antibacterial utilization has attracted great attention due to the spontaneous reducing and capping capacities of phytochemicals. However, the preferential role and mechanisms of the functional phytochemicals from different plants on AgNPs synthesis, and its catalytic and antibacterial performance remain largely unknown. This study used three widespread arbor species, including Eriobotrya japonica (EJ), Cupressus funebris (CF) and Populus (PL), as the precursors and their leaf extracts as reducing and stabilizing agents for the biosynthesis of AgNPs. A total of 18 phytochemicals in leaf extracts were identified by ultra-high liquid-phase mass spectrometer. For EJ extracts, most kinds of flavonoids participated in the generation of AgNPs by a reduced content of 5∼10%, while for CF extracts, about 15∼40% of the polyphenols were consumed to reduce Ag+ to Ag0. Notably, the more stable and homogeneous spherical AgNPs with smaller size (≈38 nm) and high catalytic capacity on Methylene blue were obtained from EJ extracts rather than CF extracts, and no AgNPs were synthesized from PL extracts, indicating that flavonoids are superior than polyphenols to act as reducer and stabilizer in AgNPs biosynthesis. The antibacterial activities against Gram-positive (Staphylococcus aureus and Bacillus mycoides) and Gram-negative bacteria (Pseudomonas putida and Escherichia coli) were higher in EJ-AgNPs than that in CF-AgNPs, which confirmed the synergistic antibacterial effects of flavonoids combined with AgNPs in EJ-AgNPs. This study provides a significant reference on the biosynthesis of AgNPs with efficient antibacterial utilization underlying effect of abundant flavonoids in plant extracts.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Polifenóis , Flavonoides , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
3.
J Hazard Mater ; 446: 130727, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630878

RESUMO

The presence of refractory organic pollutants (ROPs) in the ecosystem is a serious concern because of their impact on environmental constituents as well as their known or suspected ecotoxicity and adverse health effects. According to previous studies, carbonaceous materials, such as biochar (BC), have been widely used to remove pollutants from ecosystems owing to their desirable features, such as relative stability, tunable porosity, and abundant functionalities. Nitrogen (N)-doping and iron/nitrogen (Fe/N) co-doping can tailor BC properties and provide supplementary functional groups as well as extensive active sites on the N-doped and Fe/N co-doped BC surface, which is advantageous for interaction with and removal of ROPs. This review investigates the impact of N-doped and Fe/N co-doped BC on the removal of ROPs through adsorption, activation oxidation, and catalytic reduction due to the synergistic Fe, N, and BC features that modify the physicochemical properties, surface functional groups, and persistent free radicals of BC to aid in the degradation of ROPs. Owing to the attractive properties of N-doped and Fe/N co-doped BCs for the removal of ROPs, this review focuses and evaluates previous experimental investigations on the manufacturing (including precursors and influencing parameters during manufacturing) and characterizations of N-doped and Fe/N co-doped BCs. Additionally, the effective applications and mechanisms of N-doped and Fe/N co-doped BCs in adsorption, activation oxidation, and reductive remediation of ROPs are investigated herein. Moreover, the application of N-doped and Fe/N co-doped BC for progressive environmental remediation based on their effectiveness against co-pollutants, regeneration, stability, affordability, and future research prospects are discussed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ferro/química , Ecossistema , Nitrogênio , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/química
4.
Environ Pollut ; 317: 120637, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400144

RESUMO

Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 µmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 µmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O2-•, H2O2 and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.


Assuntos
Arsênio , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Transcriptoma , Glycine max , Arsênio/metabolismo , Fatores de Transcrição/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Metais/metabolismo , Estresse Fisiológico/genética
5.
Toxins (Basel) ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422964

RESUMO

Prevailing drug resistance in malaria imposes the major roadblock for the existing interventions necessitating the timely need to search for alternative therapies. Ants in Solenopsis spp, termed 'Fire ants', are well known for their aggressive behavior, which leads to the release of toxic venom. Notably, the tribal natives of the malaria-laden densely forested Bastar region, Chhattisgarh, India, use fire ant sting-based therapy to cure malaria-like high fever. Inspired by this, we have collected the fire ants from the forest of Bastar and extracted peptide and alkaloid fractions from ant venom using HPLC and analyzed them by LC/MS-based applications. Evaluation of the anti-malarial efficacy of these peptide fractions demonstrated a significant reduction in the growth of Plasmodium falciparum (Pf 3D7) in vitro, whereas the alkaloid fraction showed a negligible effect. in vitro hemolytic activity confirmed the venom peptide fraction to be non-hemolytic. Additionally, the venom peptide fraction is purely non-toxic to HepG2 cells. Anti-malarial efficiency of the same in Plasmodium berghei ANKA infected mice models showed a drastic reduction in parasitemia representing promising anti-malarial activity. Overall, our study has unraveled the scientific rationale underlying fire ant sting therapy used as a tribal naturotherapy for curing malaria-like fever, thus, introducing a way forward to develop nature-inspired anti-malarial chemotherapeutics.


Assuntos
Alcaloides , Venenos de Formiga , Antimaláricos , Formigas , Venenos de Artrópodes , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peptídeos/farmacologia , Alcaloides/farmacologia
6.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956882

RESUMO

The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm-1 in the wavenumber range from 4000 to 400 cm-1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 µg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.


Assuntos
Antimaláricos , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Antimaláricos/farmacologia , Química Verde/métodos , Humanos , Leucócitos Mononucleares , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889490

RESUMO

The goal of the research was to explore a new green method used to synthesize silver nanoparticles (Ag NPs) from an aqueous extract of Trigonella incise, which serves as a reducing and stabilizing agent. The obtained results showed an 85% yield of nanoparticles by using 2:5 (v/v) of 5% plant extract with a 0.5 M solution of AgNO3. Different techniques were used to characterize the synthesized Ag NPs, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The UV-visible spectra of green synthesized silver nanoparticles showed maximum absorption at a wavelength of 440 nm. The FT-IR studies revealed the stretching oscillation frequency of synthesized silver nanoparticles in the absorption band near 860 cm-1. Similarly, the bending and stretching oscillation frequencies of the NH function group were assigned to the band in the 3226 cm-1 and 1647 cm-1 regions. The bending vibration of C-O at 1159 cm-1 confirmed the carbonyl functional group that was also assigned to the small intensity band in the range of 2361 cm-1. The X-ray diffraction analysis of Ag NPs revealed four distinct diffraction peaks at 2θ of 38°, 45°, 65° and 78°, corresponds to (111), (200), (220) and (311) of the face-centered cubic shape. The round shape morphology of Ag NPs with a mean diameter in the range 20-80 nm was analyzed via SEM images. Furthermore, the nanoparticles showed more significant antimicrobial activity against Salmonella typhi (S. typhi) and Staphylococcus aureus (S. aureus) with an inhibition zone of 21.5 mm and 20.5 mm at 6 µg/mL concentrations, respectively, once compared to the standard reference. At concentrations of 2 µg/mL and 4 µg/mL, all of the bacterial strains showed moderate activity, with inhibition zones ranging from 11 mm to 18.5 mm. Even at high concentrations of AgNPs, S. typhi showed maximum resistance. The best antifungal activity was observed by synthesized Ag NPs against Candida albicans (C. albicans) with 21 mm zone of inhibition, as compared to a standard drug which gives 22 mm of inhibition. Therefore, we conclude that the antibacterial and antifungal activities showed satisfactory results from the synthesized Ag NPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Trigonella , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Difração de Raios X
8.
Arch Microbiol ; 204(8): 531, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904606

RESUMO

There is an urgent need to develop natural antimicrobials for the control of rapidly mutating drug-resistant bacteria and poultry viruses. Five extracts were prepared using diethyl ether, ethyl acetate, methanol, 1-butanol and n-hexane from abdominal fats of Varanus griseus locally known as Indian desert monitor. Antibacterial, antioxidant and antiviral activities from oil extracts were done through disc diffusion method, stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and in ovo antiviral assay, respectively. The gas chromatography mass spectrometry (GC-MS) analyses were used to determine principal active compounds and chemical profile of each oil extract. n-Hexane extract showed clear zones of inhibition (ZOI) against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae (12 ± 0.5 mm, 9 ± 0.5 mm, and 9 ± 0.5 mm) while diethyl ether extract exhibited significant antibacterial activity (11 ± 0.5 mm) against Proteus vulgaris only. In case of drug-resistant strains, methanol extract was active (6 ± 0.5 mm) against Staphylococcus aureus, whereas n-hexane extract has shown ZOI 11 ± 0.5 mm against P. aeruginosa. Range of percentage scavenging activity of V. griseus oil extracts from DPPH free radical assay was 34.9-70.7%. For antiviral potential, growth of new castle disease virus (NDV) was effectively inhibited by all five extracts (HA titer = 0-4). The highest antiviral activity against avian influenza virus (H9N2) was observed from methanol, diethyl ether and 1-Butanol oil extracts with HA titers of 2, 2 and 0, respectively. Methanol, diethyl ether, 1-butanol and n-hexane oil extracts produced best hemagglutination assay (HA) titer values (0, 0, 4 and 0) against infectious bronchitis virus (IBV). Ethyl acetate and 1-Butanol extract exhibited good antiviral potential against infectious bursal disease virus (IBDV) with indirect hemagglutination assay (IHA) titers of 8 and 4, respectively. Main classes of identified compounds through gas chromatography were aldehydes, fatty acids, phenols and esters. GC-MS identified 11 bioactive compounds in V. griseus oil extracts. It is summarized that V. griseus oil has strong antioxidant activity and good antimicrobial potential because of its bioactive compounds.


Assuntos
Anti-Infecciosos , Vírus da Influenza A Subtipo H9N2 , 1-Butanol/análise , Animais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Antioxidantes/análise , Antivirais/farmacologia , Éter/análise , Radicais Livres/análise , Cromatografia Gasosa-Espectrometria de Massas , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35668783

RESUMO

The research work presented in this study is mainly concerned with the bioactivity-directed phytochemical and biological evaluation of Persea duthiei. Persea duthiei is a typical medicinal plant used to treat a variety of ailments such as asthma, edema, and bronchitis. Ethyl acetate, n-hexane, n-butanol, and compounds that are soluble in water were used to examine the antibacterial as well as antifungal capacities of the plant. The antibacterial activity of the soluble parts of ethyl acetate and n-hexane against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis was high, even though there was no activity against Pseudomonas aeruginosa. Likewise, the n-hexane and ethyl acetate fractions were found to have substantial efficacy against several fungal strains such as Aspergillus flavus, Aspergillus fumigates, Fusarium solani, and Aspergillus niger, but not against Candida glabrata. Among the studied fractions, the ethyl acetate soluble fraction had potent antibacterial activity against all of the tested species. This fraction was submitted to phytochemical analysis utilizing various chromatographic methods for the extraction of various pure components. As a consequence, four compounds were isolated, and their structures were elucidated using various spectroscopic methods such as IR, EIMS, HR-EIMS, 1H-NMR, 13C-NMR, NOESY, COSY, HMBC, and HMQC. Urs-12-en-3ß-ol (α-amyrine) (1), Urs-12-ene-2α-3ß-diol (chamaedrydiol) (2), 3ß-hydroxyurs-12-en-28-aldehyde (ursolic aldehyde) (3), and 12-oleanex-3ß-ol (ß-amyrine) (4) were extracted. Compounds 1, 2, 3, and 4 were examined for antibacterial and antifungal activity and found to have zones of inhibition ranging from 0 to 11 mm against tested bacteria strains and percent inhibition ranging from 0 to 25 percent against fungus strains. Compounds 1 and 4 showed strong efficacy against the investigated fungal species, with a 25% inhibition rate. In the case of antibacterial activity, compounds 4 and 1 showed potent activity with zones of inhibition of 11 mm and 10 mm, respectively. Compounds 2 and 3 were observed to have nonsignificant antimicrobial activity. However, docking studies reflected the complex formation of compound 1 with beta-hydroxyacyl-ACP dehydratase HadAB and S. aureus tyrosyl-tRNA synthetase and compound 2 with topoisomerase II DNA gyrase complex, and they were reported to have antibacterial properties. Similarly, compound 4 was discovered to be well compatible with the lanosterol 14-demethylase (fungal enzyme) and is thus regarded as having antifungal capabilities. Chimera software was used to identify the binding pockets of these complexes. These results indicated that Persea duthiei is a valuable source of medicinal compounds for medication development.

10.
Front Microbiol ; 13: 868862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547151

RESUMO

Sustainable reduction of fertilization with technology acquisition for improving soil quality and realizing green food production is a major strategic demand for global agricultural production. Introducing legume (LCCs) and/or non-legume cover crops (NLCCs) during the fallow period before planting main crops such as wheat and corn increases surface coverage, retains soil moisture content, and absorbs excess mineral nutrients, thus reducing pollution. In addition, the cover crops (CCs) supplement the soil nutrients upon decomposition and have a green manure effect. Compared to the traditional bare land, the introduction of CCs systems has multiple ecological benefits, such as improving soil structure, promoting nutrient cycling, improving soil fertility and microbial activity, controlling soil erosion, and inhibiting weed growth, pests, and diseases. The residual decomposition process of cultivated crops after being pressed into the soil will directly change the soil carbon (C) and nitrogen (N) cycle and greenhouse gas emissions (GHGs), and thus affect the soil microbial activities. This key ecological process determines the realization of various ecological and environmental benefits of the cultivated system. Understanding the mechanism of these ecological environmental benefits provides a scientific basis for the restoration and promotion of cultivated crops in dry farming areas of the world. These findings provide an important contribution for understanding the mutual interrelationships and the research in this area, as well as increasing the use of CCs in the soil for better soil fertility, GHGs mitigation, and improving soil microbial community structure. This literature review studies the effects of crop biomass and quality on soil GHGs emissions, microbial biomass, and community structure of the crop cultivation system, aiming to clarify crop cultivation in theory.

11.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406930

RESUMO

Genetic diversity and Agro-climatic conditions contribute significantly to the agronomic and morphological features of the food plant species, and their nutraceutical potential. The present study was intended to evaluate the impact of growing conditions on total phenolic and total flavonoid contents, and in vitro antioxidant potential in the bulbs and leaves of onion varieties planted under diverse environmental conditions. Standard analytical methods were used to quantify total phenolic content (TPC), total flavonoid content (TFC), and free radicals' scavenging/antioxidant capacity. The impact of climatic and soil conditions was assessed using statistical tools. In general, onion varieties cultivated at three different locations viz. Kalar Kahar, Lahore and Swabi exhibited significant variations in TPC and TFC, and antioxidant activities. The bulbs and leaves of Mustang (V1) variety planted at Lahore and Swabi had significantly (p < 0.05), high levels of TPC (659.5 ± 6.59, and 631.1 ± 8.58 mg GAE/100 g, respectively). However, leaves of Red Orb (V2) and bulbs of Mustang (V1), and Golden Orb (V6), harvested from Kalar Kahar depicted the highest concentration of TFC (432.5 ± 10.3, 303.0 ± 6.67, and 303.0 ± 2.52 mg QE/100 g DW, respectively). Likewise, bulbs of V1 planted at Kalar Kahar, Lahore and Swabi exhibited maximum inhibition of DPPH, ABTS, and H2O2 radicals (79.01 ± 1.49, 65.38 ± 0.99, and 59.76 ± 0.90%, respectively). Golden Orb (V6) harvested from Lahore had the highest scavenging of OH radical (67.40 ± 0.09%). Likewise, bulbs of V1 variety planted at KalarKahar and Swabi had significant capacity to scavenge ferric ions (415.1 ± 10.6 mg GAE/100 g DW), and molybdate ions (213.7 ± 0.00 mg AAE/100 g DW). Conversely, leaves of Amazon (V8), planted at Lahore and Swabi depicted significant levels of DPPH, ABTS, H2O2 radical scavenging (90.69 ± 0.26, 63.55 ± 1.06, 51.86 ± 0.43%, respectively), and reduction of ferric ions (184.2 ± 6.75 mg GAE/100 g DW). V6 leaves harvested from Lahore and that of Super Sarhad (V3) from Swabi showed the highest inhibition of OH radical (61.21 ± 0.79%), and molybdate ions (623.6 ± 0.12 mg AAE/100 g DW), respectively. Pearson correlation and principal component analysis revealed strong relationships of climatic conditions, soil properties and elevation with TPC, TFC and free radicals' scavenging potential in the bulbs and leaves of onion varieties. The variations in the total phenolic and flavonoid contents, and antioxidant potential of different varieties, and their associations with climatic and soil factors revealed the complexity of the growing conditions and genetic makeup that imposed significant impacts on the synthesis of secondary metabolites and nutraceutical potential of food and medicinal plant species.

12.
Pak J Pharm Sci ; 34(5(Supplementary)): 1951-1955, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836865

RESUMO

Diabetes mellitus (DM) is a metabolic disorder characterized by frequent urination, hunger and high blood sugar level. α-glucosidase inhibitors are considered as a frontline treatment for the DM. This research article deals with the identification of benzothiazine derivatives as α-glucosidase inhibitors through in-silico techniques and then the confirmation through in-vitro analysis. Molecular docking studies were carried out to find out the binding interactions of targeted molecules with receptor molecule i.e., α-glucosidase enzyme. The synthetic compounds 1 (a-n), 2 (a-d) and 3 (a-b) were evaluated for in-vitro alpha glucosidase inhibitory activities that resulted in the discovery of various potent molecules. Majority of the compounds (1c, 1f, 1g, 1k-n, 2a-d and 3a-b) exhibited good inhibitory activity against α-glucosidase. Compounds 1c, 1g, 1k and 1m appeared as the potent active compounds with the IC50 values 17.44, 27.64, 24.43, 42.59 and 16.90 µM respectively. Compounds 1c & 2c were found almost 3-folds more active than the standard acarbose. The study may lead to discover potent drug candidates with less complication for the treatment of the type II diabetes mellitus.


Assuntos
Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Tiazinas/síntese química , Tiazinas/farmacologia , Simulação por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
13.
Front Pharmacol ; 12: 658670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140890

RESUMO

The roots of Glycyrrhiza spp. have been utilized in Traditional Chinese medicine (TCM) for thousands of years. Non-traditional (aerial) parts constitute a large portion of the biomass of Glycyrrhiza plants and are mostly discarded after harvesting the roots and rhizomes. Through comparative phytochemical and anti-inflammatory activity analyses, this study explored the potential benefits of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. as medicinal materials. First, a combined approach based on GC/MS and UHPLC-ESI-QTof MS analysis was adopted for the identification and quantitative examination of medicinally important compounds from G. uralensis. Additionally, a bioassay-guided fractioning of ethanolic extracts of G. uralensis leaf material was performed and its anti-inflammatory activity was tested. The aerial portion of G. uralensis was rich in medicinally important compounds. Two compounds (henicosane-1 and decahydroisoquinoline-2) were found to exert a significant anti-inflammatory effect, inhibiting the release of pro-inflammatory mediators (NO and PGE2) and cytokines (IL-1ß, IL6, and TNF-α), without exerting cytotoxic effects. Moreover, both compounds down-regulated iNOS and COX-2 mRNA expression. These results suggest that non-traditional parts of G. uralensis are suitable sources of bioactive metabolites that can be explored for medicinal purposes.

14.
Protoplasma ; 257(4): 1079-1092, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32146513

RESUMO

Melatonin is an important plant growth regulator which plays a key role in plant growth and development. The objective of the current research was to evaluate the effect of foliar application of melatonin (MF) on photosynthetic efficiency, antioxidant defense mechanism, and its relation with leaf senescence in maize crop grown in a semi-arid region. A field experiment was conducted during 2017 and 2018 growth season, where melatonin was applied to the foliage at concentrations of 0 (MF0), 25 (MF1), 50 (MF2), and 75 (MF3) µM at the ninth leaf stage. Foliar application of melatonin significantly improved chlorophyll content, net photosynthetic rate, soluble sugar content, and soluble protein content during the process of leaf senescence. The application of melatonin also enhanced antioxidant enzyme activities including superoxide dismutase, catalase, and peroxidase, while reduced malondialdehyde and reactive oxygen species accumulation. Melatonin foliar application also increased total leaf area per plant, grains per ear, thousand grain weight and grain yield of maize crop in a semi-arid region. The application of melatonin significantly improved photosynthetic activity, antioxidant defense mechanism, and yield of maize crop in a semi-arid region, where the most effective treatment was MF2.


Assuntos
Antioxidantes/metabolismo , Melatonina/uso terapêutico , Fotossíntese/imunologia , Folhas de Planta/química , Zea mays/química , Melatonina/farmacologia
15.
J Hazard Mater ; 393: 122446, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155525

RESUMO

In this study, lincomycin residue (LR, a type of antibiotic mycelial residue) derived hydrochar samples (LR-HCs) were obtained from hydrothermal carbonization (HTC), and pyrolysis applied to these LR-HCs to produce activated pyrolyzed samples (LR-APs). Transformation of phosphorus (P) and nitrogen (N) species during HTC and pyrolysis was of primary interest and characterized by several techniques. Nitrogen content of dry LR was calculated by elemental analysis, being 7.91 wt. %, decreasing to 2.51 after HTC and 1.12 wt. % after concesutive HTC and pyrolysis. FT-IR analysis provided evidence for amine groups in LR samples. XPS analysis described N species (Pyridinic-N, Amine-N, Protein-N, Pyrrolic-N, and Quaternary-N) and P species (ortho-P/pyro-P and Ar-P) in LR samples, effectively. Sequential extraction showed that the HTC and pyrolysis changed the proportion of the P species from labile (P-NaHCO3 and P-NaOH) to stable ones (P-residue). Utilization and suitability of as-prepared LR-HCs and LR-APs for heavy metal Pb (II) immobilization show promising results. To help understand immobilization process, kinetic (pseudo-1st-order and pseudo-2nd-order) and isotherm (Freundlich) models were tested and verified. Results confirmed that P and N species were transformed during HTC and pyrolysis and that these processes lead to an advantageous effect on Pb (II) removal from solution.


Assuntos
Antibacterianos/química , Chumbo/química , Lincomicina/química , Nitrogênio/química , Fósforo/química , Poluentes Químicos da Água/química , Micélio , Pirólise
16.
J Pak Med Assoc ; 69(11): 1601-1604, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31740863

RESUMO

OBJECTIVE: To determine the effect of Mulligan Spinal Mobilisation with Arm Movement along with neurodynamics and manual traction on pain, disablity and cervical range of motion in cervical radiculopathy patients. METHODS: The randomised controlled trial (RCT) was conducted from August to December 2017 at the Railway General Hospital, Rawalpindi, Pakistan, and comprised cervical radiculopathy patients of either gender aged 20-60 years. They were randomised into two groups, with the experimental Group A getting treated with Spinal Mobilisation with Arm Movement along with neurodynamics and manual traction, while the control group B only getting treated with neurodynamics and manual traction. The pain, disability and cervical range of motion were assessed before and after treatment of 3 weeks using Numeric Pain Rating Scale, Neck Disability Index and Goniometry. Data was analyzed using SPSS 21. RESULTS: Of the 31 patients, 19(61.3%) were females and 12(38.7%) were males. The overall mean age was 41.65±9.714 years. There were 15(48.4%) patients in Group A, and 16(51.6%) in Group B. Group A showed significantly better results in terms of pain, disability and cervical range of motion (p<0.05 each). CONCLUSIONS: Patients treated with Spinal Mobilisation with Arm Movement along with neurodynamics and manual traction had better outcome compared to those who only got neurodynamics and manual traction.


Assuntos
Vértebras Cervicais/fisiopatologia , Manipulações Musculoesqueléticas/métodos , Radiculopatia/fisiopatologia , Radiculopatia/terapia , Adulto , Dor nas Costas/etiologia , Dor nas Costas/fisiopatologia , Dor nas Costas/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiculopatia/complicações , Amplitude de Movimento Articular/fisiologia , Tração
17.
Sci Total Environ ; 687: 1381-1388, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412471

RESUMO

Treatment of antibiotic fermentative residue (AFR) produced from pharmaceutical industries and their application in the environment has been gaining researchers' interest. In this study, lincomycin residue (LMR, the type of AFR) was treated with microwave-assisted hydrothermal liquefaction (MW-HTL) in a temperature range 120-210 °C, transforming effect of phosphorus (P) and nitrogen (N) functional groups in LMR samples was characterized with elemental analysis, XRD, XPS, FT-IR, and P-extraction, and utilized LMR samples for Pb2+ removal from aqueous solutions. The temperature had a significant impact on P and N functional groups conversion justified by characterization techniques and also responsible for Pb2+ adsorption. LMR hydrochar produced at 210 °C was accounted highest Pb2+ adsorption capacity (57.4 mg g-1), higher four folds than raw LMR (13.8 mg g-1). To understand the mechanism and rate defining phase of adsorption equilibrium isotherm and kinetic models were applied systematically. Adsorption results of LMR and its derived hydrochar samples found connectivity with Langmuir and pseudo-first-order isotherm models. Adsorption mainly occurred as ion-exchange dependent on the substitution of metal ions (Pb2+) to Ca2+ ions present in P-materials, and surface adsorption dependent on surface functional groups of LMR samples. Better operation feasibility of MW-HTL treated LMR, elaboration of P and N conversion behavior and high sorption of Pb2+ ions could make LMR a frontrunner for heavy metals immobilization.


Assuntos
Chumbo/análise , Lincomicina/análise , Lincomicina/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Chumbo/química , Micro-Ondas , Nitrogênio/análise , Nitrogênio/química , Fósforo/análise , Fósforo/química , Poluentes Químicos da Água/química
18.
Environ Sci Pollut Res Int ; 24(6): 5811-5823, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28054268

RESUMO

Crop nutrient management is an essential component of any cropping system. With increasing concerns over environmental protection, improvement in fertilizer use efficiencies has become a prime goal in global agriculture system. Phosphorus (P) is one of the most important nutrients, and strategies are required to optimize its use in important arable crops like cotton (Gossypium hirsutum L.) that has great significance. Sustainable P use in crop production could significantly avoid environmental hazards resulting from over-P fertilization. Crop growth modeling has emerged as an effective tool to assess and predict the optimal nutrient requirements for different crops. In present study, Decision Support System for Agro-technology Transfer (DSSAT) sub-model CSM-CROPGRO-Cotton-P was evaluated to estimate the observed and simulated P use in two cotton cultivars grown at three P application rates under the semi-arid climate of southern Punjab, Pakistan. The results revealed that both the cultivars performed best at medium rate of P application (57 kg ha-1) in terms of days to anthesis, days to maturity, seed cotton yield, total dry matter production, and harvest index during 2013 and 2014. Cultivar FH-142 performed better than MNH-886 in terms of different yield components. There was a good agreement between observed and simulated days to anthesis (0 to 1 day), days to maturity (0 to 2 days), seed cotton yield, total dry matter, and harvest index with an error of -4.4 to 15%, 12-7.5%, and 13-9.5% in MNH-886 and for FH-142, 4-16%, 19-11%, and 16-8.3% for growing years 2013 and 2014, respectively. CROPGRO-Cotton-P would be a useful tool to forecast cotton yield under different levels of P in cotton production system of the semi-arid climate of Southern Punjab.


Assuntos
Clima Desértico , Gossypium , Modelos Teóricos , Fósforo , Agricultura/métodos , Produtos Agrícolas , Fertilizantes , Paquistão
19.
J Sci Food Agric ; 97(11): 3685-3690, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28106248

RESUMO

BACKGROUND: The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. RESULTS: Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g-1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. CONCLUSION: The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry.


Assuntos
Bactérias/metabolismo , Fertilizantes/análise , Minerais/análise , Triticum/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Minerais/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Solo/química , Triticum/metabolismo , Triticum/microbiologia
20.
Pak J Med Sci ; 32(2): 476-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182265

RESUMO

BACKGROUND AND OBJECTIVE: Chronic mechanical low back pain is common among different age groups and genders. Different manual therapy techniques combined with exercise therapy and electrotherapy modalities play an important role in its management. Our objective was to compare the effects of McKenzie extension exercisesprogram (EEP) versus Mulligan Sustained Natural Apophyseal Glides (SNAGs) for chronic mechanical low back pain (CMLBP). METHODS: This randomized control trial (RCT) was conducted at Riphah Physical Rehabilitation Centre, Pakistan Railways General Hospital Rawalpindi, from 1(st) July to 31(st) December 2014. The inclusion criteria was patients of both gender and age range 30-70 years with minimum 4 weeks history of CMLBP. A total of 37 patients were screened out as per inclusion criteria and randomly placed into two groups. Twenty patients in group A were treated with Mulligan SNAGs and 17 patients in group B with McKenzie EEP for four weeks at two session per week and single session per day. Visual Analogue Scale (VAS), Oswestry Disability Scale (ODI) and lumber Range of Motion (ROM) were used as an assessment tools and were measured at baseline and at the completion 4 weeks intervention. The data was analyzed with SPSS to draw the statistical and clinical significance of both interventions. RESULTS: At the completion of 4 weeks intervention the pre and post statistical analysis revealed that clinically the McKenzie EEP improved pain (mean 9.12 to 1.46) and disability (73.82 to 6.24) slightly more than Mulligan SNAGs (pain: from 8.85 to 2.55, disability 73.75 to 7.05), while the Mulligan SNAGs improved lumbar ROM more effectively than McKenzie EEP in all directions including flexion, extension, side bending and rotation. Statistically there was no significant difference between the effects of two interventions in managing pain and disability, and improving Lumber ROM. CONCLUSION: McKenzie EEP is clinically slightly more effective in the management of pain and disability as compared with Mulligan SNAGs, while Mulligan SNAGs are more effective in the improvement of lumbar ROM as compared with Mechanize EEP in the management of CMLBP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA