Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175328

RESUMO

Different parts of Ficus religiosa are the common components of various traditional formulations for the treatment of several blood disorders. The new-fangled stem buds' powder was extracted with 80% ethanol and successively fractionated by chloroform and methanol. Chloroform and methanol fractions of Ficus religiosa (CFFR and MFFR) were tested for antiplatelet, antithrombotic, thrombolytic, and antioxidant activity in ex vivo mode. The MFFR was particularly investigated for GC-MS and toxicity. The antiplatelet activity of the CFFR, MFFR, and standard drug aspirin at 50 µg/mL was 54.32%, 86.61%, and 87.57%, and a significant delay in clot formation was noted. CFFR at different concentrations did not show a significant effect on the delay of clot formation, antiplatelet, and free radical scavenging activity. The most possible marker compounds for antiplatelet and antioxidant activity identified by GC-MS in the MFFR are salicylate derivatives aromatic compounds such as benzeneacetaldehyde (7), phenylmalonic acid (13), and Salicylic acid (14), as well as Benzamides derivatives such as carbobenzyloxy-dl-norvaline (17), 3-acetoxy-2(1H)-pyridone (16), and 3-benzylhexahydropyrrolo [1,2-a] pyrazine-1,4-dione (35). A toxicity study of MFFR did not show any physical indications of toxicity and mortality up to 1500 mg/kg body weight and nontoxic up to 1000 mg/kg, which is promising for the treatment of atherothrombotic diseases.


Assuntos
Fibrinolíticos , Ficus , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Metanol , Antioxidantes/farmacologia , Clorofórmio , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA