Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932699

RESUMO

Hibiscus species are rich in phenolic compounds and have been traditionally used for improving human health through their bioactive activities. The present study investigated the phenolic compounds of leaf extracts from 18 different H. acetosella accessions and evaluated their biofunctional properties, focusing on antioxidant and antibacterial activity. The most abundant phenolic compound in H. acetosella was caffeic acid, with levels ranging from 14.95 to 42.93 mg/100 g. The antioxidant activity measured by the ABTS assay allowed the accessions to be classified into two groups: a high activity group with red leaf varieties (74.71-84.02%) and a relatively low activity group with green leaf varieties (57.47-65.94%). The antioxidant activity was significantly correlated with TAC (0.933), Dp3-Sam (0.932), Dp3-Glu (0.924), and Cy3-Sam (0.913) contents (p < 0.001). The H. acetosella phenolic extracts exhibited antibacterial activity against two bacteria, with zones of inhibition between 12.00 and 13.67 mm (Staphylococcus aureus), and 10.67 and 13.33 mm (Pseudomonas aeruginosa). All accessions exhibited a basal antibacterial activity level (12 mm) against the Gram-positive S. aureus, with PI500758 and PI500764 exhibiting increased antibacterial activity (13.67 mm), but they exhibited a more dynamic antibacterial activity level against the Gram-negative P. aeruginosa.


Assuntos
Antibacterianos/análise , Antioxidantes/análise , Hibiscus/química , Fenol/análise , Folhas de Planta/química , Antocianinas/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cátions , Flavonoides/química , Testes de Sensibilidade Microbiana , Fenol/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
2.
Molecules ; 24(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430944

RESUMO

The flowers of chrysanthemum species are used as a herbal tea and in traditional medicine. In addition, members of the genus have been selected to develop horticultural cultivars of diverse floral colors and capitulum forms. In this research, we investigated the phytochemical composition of eight gamma-irradiation mutant cultivars of Chrysanthemum morifolium and their original cultivars. The mutant chrysanthemum cultivars were generated by treatment with various doses of 60Co gamma irradiation of stem cuttings of three commercial chrysanthemum cultivars as follows: 'ARTI-Dark Chocolate' (50Gy), 'ARTI-Purple Lady' (30 Gy), and 'ARTI-Yellow Star' (50 Gy) derived from 'Noble Wine'; 'ARTI-Red Star' (50 Gy) and 'ARTI-Rising Sun' (30 Gy) from 'Pinky'; 'ARTI-Purple' (40 Gy) and 'ARTI-Queen' (30 Gy) from 'Argus'; and 'ARTI-Rollypop' (70 Gy) from 'Plaisir d'amour'. Quantitative analysis of flavonoids, phenolic acids, anthocyanins, and carotenoids in the flowers of the 12 chrysanthemum cultivars was performed using high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry (HPLC-DAD-ESIMS). Essential oils from the flowers of these cultivars were analyzed by gas chromatography-mass spectrometry (GC-MS). The mutant cultivars, 'ARTI-Dark Chocolate', 'ARTI-Purple Lady', 'ARTI-Purple', and 'ARTI-Queen' showed higher total amounts of flavonoid and phenolic acid compared with those of the respective original cultivars. The mutant cultivars, 'ARTI-Dark Chocolate', 'ARTI-Purple Lady' and 'ARTI-Purple', which produce purple to pink petals, contained more than two-times higher amounts of anthocyanins compared with those of their original cultivars. Of the mutant cultivars, 'ARTI-Yellow Star' in which petal color was changed to yellow, showed the greatest accumulation of carotenoids. Ninety-nine volatile compounds were detected, of which hydrocarbons and terpenoids were abundant in all cultivars analyzed. This is the first report that demonstrated the phytochemical analysis of novel chrysanthemum cultivars derived from C. morifolium hydrid using HPLC-DAD-ESIMS and GC-MS. These findings suggest that the selected mutant chrysanthemum cultivars show potential as a functional source of phytochemicals associated with the abundance of health-beneficial components, as well as good source for horticulture and pigment industries.


Assuntos
Chrysanthemum/química , Compostos Fitoquímicos/química , Antocianinas/química , Carotenoides/química , Cromatografia Líquida de Alta Pressão/métodos , Cor , Flavonoides/química , Flores/química , Raios gama , Óleos Voláteis/química , Pigmentação
3.
Planta ; 234(5): 1065-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21717188

RESUMO

p19 protein encoded by tomato bushy stunt virus (TBSV) is known as a suppressor of RNA silencing via inhibition of small RNA-guided cleavage in plants. In this study, we generated TBSVp19-expressing patatin-RNAi transgenic potatoes to identify the inhibitory mechanisms of RNA silencing mediated by TBSVp19. In TBSVp19-expressing patatin-RNAi lines, reduction of patatin-derived siRNA accumulation and complementation of patatin transcripts were detected in comparison with the non-TBSVp19-expressing patatin-RNAi line, suggesting that TBSVp19 suppresses the siRNA-mediated silencing pathway. Interestingly, no apparent effect on the accumulation of miRNA168 and other miRNAs was detected in TBSVp19-expressing lines; previous studies reported that p19 induced the accumulation of both miRNA168 and its target Argonaute 1 (AGO1) mRNA, but suppressed AGO1 translation via up-regulation of miRNA168 in Arabidopsis. In addition, the expression of Argonaute 1 (AGO1-1 and AGO1-2) and Dicer-like 1 (DCL1) was not significantly altered in p19-expressing lines. Interestingly, no translational inhibition of AGO1 mediated by p19 was detected. These results suggest that p19 suppresses siRNA-mediated silencing in potato, but may not affect miRNA-mediated silencing, possibly due to the host-dependent manner of p19 activity.


Assuntos
Interferência de RNA , Solanum lycopersicum/genética , Tombusvirus/metabolismo , Proteínas Virais/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Northern Blotting , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Solanum lycopersicum/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tombusvirus/genética , Proteínas Virais/genética
4.
Methods Enzymol ; 499: 347-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21683262

RESUMO

Serpins appear to be ubiquitous in the Plant Kingdom and have several unique properties when compared to the substantial number of other families of protease inhibitors in plants. Serpins in plants are likely to have functions distinct from those of animal serpins, partly because plants and animals developed multicellularity independently and partly because most animal serpins are involved in animal-specific processes, such as blood coagulation and the activation of complement. To encourage and facilitate the discovery of plant serpin functions, here we provide a set of protocols for detection of serpins in plant extracts, localization of serpins in plant tissues and cells, purification of serpins from a range of organs from monocot and eudicot plants, production and purification of recombinant plant serpins, and analysis of plant-protease interactions including identification of in vivo target proteases.


Assuntos
Plantas/metabolismo , Inibidores de Serina Proteinase/isolamento & purificação , Inibidores de Serina Proteinase/metabolismo , Serpinas/isolamento & purificação , Serpinas/metabolismo , Especificidade de Anticorpos , Arabidopsis/química , Arabidopsis/metabolismo , Avena/química , Avena/metabolismo , Western Blotting , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Malus/química , Malus/metabolismo , Plantas/genética , Inibidores de Serina Proteinase/genética , Serpinas/genética
5.
J Biol Chem ; 281(19): 13708-13716, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16549428

RESUMO

D-apiose serves as the binding site for borate cross-linking of rhamnogalacturonan II (RG-II) in the plant cell wall, and biosynthesis of D-apiose involves UDP-D-apiose/UDP-D-xylose synthase catalyzing the conversion of UDP-D-glucuronate to a mixture of UDP-D-apiose and UDP-D-xylose. In this study we have analyzed the cellular effects of depletion of UDP-D-apiose/UDP-D-xylose synthases in plants by using virus-induced gene silencing (VIGS) of NbAXS1 in Nicotiana benthamiana. The recombinant NbAXS1 protein exhibited UDP-D-apiose/UDP-D-xylose synthase activity in vitro. The NbAXS1 gene was expressed in all major plant organs, and an NbAXS1-green fluorescent protein fusion protein was mostly localized in the cytosol. VIGS of NbAXS1 resulted in growth arrest and leaf yellowing. Microscopic studies of the leaf cells of the NbAXS1 VIGS lines revealed cell death symptoms including cell lysis and disintegration of cellular organelles and compartments. The cell death was accompanied by excessive formation of reactive oxygen species and by induction of various protease genes. Furthermore, abnormal wall structure of the affected cells was evident including excessive cell wall thickening and wall gaps. The mutant cell walls contained significantly reduced levels of D-apiose as well as 2-O-methyl-L-fucose and 2-O-methyl-D-xylose, which serve as markers for the RG-II side chains B and A, respectively. These results suggest that VIGS of NbAXS1 caused a severe deficiency in the major side chains of RG-II and that the growth defect and cell death was likely caused by structural alterations in RG-II due to a D-apiose deficiency.


Assuntos
Carbono-Nitrogênio Ligases/deficiência , Parede Celular/metabolismo , Nicotiana/citologia , Nicotiana/enzimologia , Pectinas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Xilose/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Morte Celular , Inativação Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
6.
Plant J ; 38(6): 969-81, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15165188

RESUMO

Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.


Assuntos
Calpaína/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Nicotiana/genética , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Calpaína/genética , Ciclo Celular/genética , Clonagem Molecular , DNA Complementar/análise , Expressão Gênica , Inativação Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA