Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Cell ; 77: 101849, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728334

RESUMO

Copper (Cu) ions have been found to exert antibacterial and angiogenic effects. However, some studies have indicated that it inhibits osteogenesis at high concentrations. On the other hand, L-arginine (Arg) is a semi-essential amino acid required for various biological processes, including osteogenic and angiogenic activities. As a result, we hypothesized that combining Arg with Cu ions would reduce its inhibitory effects on osteogenesis while increasing its angiogenic and antibacterial capabilities. To assess osteogenic and angiogenic activities, we employed rat bone marrow mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs), respectively. The gram-positive bacteria Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), and the gram-negative bacterium Escherichia coli (E. coli) were used to investigate bacterial behaviors. According to ALP activity and calcium deposition outcomes, copper ions inhibited osteogenic development of MSCs at 100 µM; however, Arg supplementation somewhat mitigated the inhibitory effects. Furthermore, Copper and Arg synergistically stimulated migration and tube formation of HUVECs. According to our findings, copper ions and Arg in the range of 1-100 µM had no antibacterial effect on any examined bacteria. However, at a dose of 20 mM, copper demonstrated antibacterial activity, which was boosted by Arg. Overall, these findings suggest that a combination of copper and Arg may be more beneficial for bone regeneration than either copper or Arg alone.


Assuntos
Cobre , Osteogênese , Animais , Antibacterianos/farmacologia , Arginina/farmacologia , Cobre/química , Cobre/farmacologia , Escherichia coli , Células Endoteliais da Veia Umbilical Humana , Humanos , Íons , Ratos , Staphylococcus aureus
2.
Asian Pac J Cancer Prev ; 23(3): 867-875, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35345358

RESUMO

OBJECTIVE: Atorvastatin is commonly used as a lipid lowering drug. The emerging interest in  statins as anticancer agents is based on their pleiotropic effects on cancer cells. Among the statins, atorvastatin, and in cancers, breast malignancies have received less attention in preclinical investigations. In order to enhance the efficacy of cancer treatment,  adjuvant, less expensive therapeutic strategies have been recently noticed. In this case, we investigated the in-vitro effect of atorvastatin on viability and migration of MCF7 breast cancer cell line. METHODS: We tested the cytotoxicity of atorvastatin on breast cancer cells survival by MTT assay. Annexin-V / PI staining and then flow cytometry of cancer cells in addition to quantitative real-time PCR tests quantified the apoptosis and necrosis of cancer cells. We figured out the impact of atorvastatin on cancer cell migration capability through scratch-wound healing assay and transwell migration examination. Inverted light microscope and fluorescent imaging displayed the morphological changes following treatment of MCF7 cells with atorvastatin. RESULT: We resulted that atorvastatin can trigger MCF7 cancer cells to undergo necrosis and caspase-dependent apoptosis based on the viable/dead cell number, mitotic cell cycle, gene expression, and morphological assays. The results were dose- and time-dependent and the half- maximal inhibitory concentration of atorvastatin for cancer cells' viability inhibition was 9.1 µM/L(nM/mL). Moreover, the migration of MCF7 cells were inhibited in the treated group as we figured out in two- and three-dimensional migration methods. CONCLUSION: In-vitro inspection of drug-cancer cell interactions paves the way  for future in-vivo research studies. These in-vitro results revealed that atorvastatin has anti-viability and anti-migration effects on breast cancer cells.


Assuntos
Neoplasias da Mama , Apoptose , Atorvastatina/farmacologia , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7
3.
Asian Pac J Cancer Prev ; 23(2): 731-741, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225487

RESUMO

BACKGROUND: Breast Cancer (BC) is a malignancy with high mortality among women. Recently, scaffold-based three-dimensional (3D) models have been developed for anti-cancer drug research. The present study aimed to investigate the anti-proliferative effects of Astragalus hamosus (A. hamosus) in 3D fibrin gel against MCF-7 cell line. We have also evaluated anti-proliferative effect of A. hamosus differences between 3D and 2D cultures. METHODS: The fibrin gel formulation was first optimized by testing the structural and mechanical properties. Then the cytotoxic effect of A. hamosus extract was assessed on MCF-7 cells by MTT assay. Cell apoptosis was evaluated using TUNEL method and flow cytometry. Cell cycle and proliferation were analyzed by flow cytometry. Apoptosis-related gene expression such as Bcl-2, caspase-3, -8 and -9 were quantified by real time-PCR. RESULTS: TUNEL staining showed a significant damage accompanied with cell apoptosis. Flow cytometry analysis revealed that apoptosis increased after treatment with A. hamosus extract in 3D culture model compared to 2D culture. The A. hamosus extract arrested cell cycle in the S and G2/M phases in 3D model while in the 2D culture G0/G1 phase was affected. Treatment with A. hamosus extract led to upregulation of the caspase-3, -8 and -9 genes and downregulation of the Ki-67 in the 3D-culture compared with the 2D culture. CONCLUSION: These results indicated that A. hamosus extract could be used as a therapeutic candidate for BC due to its anti-proliferative effects. Furthermore, 3D fibrin gel could be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely, anti-proliferative and anti-apoptotic features.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astrágalo/química , Neoplasias da Mama/tratamento farmacológico , Técnicas de Cultura de Células em Três Dimensões/métodos , Extratos Vegetais/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Géis , Humanos , Células MCF-7
4.
Cell Tissue Bank ; 23(4): 767-789, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988840

RESUMO

Recent studies have demonstrated inhibitory effects of mesenchymal stem cells on breast tumors. Likewise, the emerging interest in statins as anticancer agents is based on their pleiotropic effects. In the present study, we investigated whether atorvastatin and umbilical cord matrix derived mesenchymal stem cells-conditioned medium affect the MCF7 cancer cells viability and interactions. We measured the viability of MCF7 cancer cells by MTT assay, flow cytometry, and quantitative real-time PCR. Two-dimensional culture and hanging drop aggregation assay illustrated the morphological changes. We traced the MCF7 migration via scratch-wound healing test and trans-well assay. The results showed the inhibition of cancer cell viability in all treated groups compared to the control group. The effect of atorvastatin and conditioned medium combination was significantly more than each substance separately. The morphological changes indicated apoptosis in treated cells. The annexin V/PI flow cytometry especially in the combination-treated group displayed decreasing in DNA synthesis and cell cycle arrest in G1 and G2/M phases. As well, the mRNA expressions of caspases 3, 8, 9, and Bcl-2 genes were along with extrinsic and intrinsic apoptosis pathways. Conditioned medium disrupted the connections between cancer cells, so the spheroids in three-dimensional configuration lost their order and dispersed. The migration of treated cells across the wound area and trans-well diminished, particularly by the conditioned medium and atorvastatin combination. There fore, the synergistic anti-proliferative and anti-motility effect of atorvastatin along with human umbilical cord mesenchymal stem cells-derived conditioned medium on MCF7 breast cancer cells have been proved. The results might lead the development of novel adjuvant anticancer therapeutics based on targeting or modifying the extracellular matrix to increase chemotherapy results or to prevent metastatic colonization. Schematic representation of "Synergistic Inhibitory Effect of Human Umbilical Cord Matrix Mesenchymal Stem Cells-Conditioned Medium and Atorvastatin on MCF7 Cancer Cells Viablity and Migration" by: Dr. Reyhaneh Abolghasemi, Dr. Somayeh Ebrahimi-barough, Proffesor. Jafar Ai.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Meios de Cultivo Condicionados/farmacologia , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Proliferação de Células , Cordão Umbilical
5.
Pharmacol Rep ; 74(2): 379-391, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35089543

RESUMO

BACKGROUND: Natural killer cells (NKC) and Sorafenib (Sor) are two important agents for the treatment of hepatocellular carcinoma (HCC). Over the past decade, the interaction of Sor and NKC against HCC has been widely challenging. This study aimed to assess the efficacy of NKC & Sor for the treatment of HCC in vivo. METHODS: Subcutaneous xenograft models of HCC were established in nude mice. For safety assessment of treatment, the kidney and liver functions were analyzed. Paraffin embedded tumor sections were histopathologically studied and immunohistochemistry (IHC) tests were done to evaluate the angiogenesis (CD34) and proliferation (Ki67) indexes. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to identify the tumor cells undergoing apoptosis. The serum levels of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were measured by enzyme-linked immunosorbent assay (ELISA) and expression levels of major inflammatory cytokines and cytoplasmic granules in xenograft HCC were quantified using real-time PCR. RESULTS: NKC & Sor significantly inhibited necrosis and apoptosis in tumor cells and increased angiogenesis and proliferation of HCC compared to the monotherapy of NKC or Sor alone. The serum levels of TNF-α, IFN-γ as well as the expression levels of TNF-α, IFN-γ, interleukins (ILs)-1, 6, 10, granzyme-B and perforin in the xenograft HCC tissues of the treated mice with NKC & Sor were significantly lower than those of treated with NKC or Sor alone. CONCLUSION: Therapy with the specific dosage of NKC & Sor could not inhibit the HCC xenograft growth rate through a synergistic effect in a mouse model of HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Sorafenibe/farmacologia
6.
Drug Deliv Transl Res ; 12(7): 1605-1615, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34542840

RESUMO

COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.


Assuntos
COVID-19 , Terapia por Estimulação Elétrica , Neoplasias , COVID-19/terapia , Humanos , Neoplasias/terapia , Pandemias , Tecnologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32617114

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer and the second most common cause of cancer-related death worldwide. Sorafenib (Sora) is used as a targeted therapy for HCC treatment. Mesenchymal stem cells (MSCs) are applied as a new approach to fight malignancies. Drug resistance and side effects are the major concerns with Sora administration. The effect of using the combination of sorafenib and MSCs on tumor regression in xenograft HCC models was evaluated in this study. Methods and Materials. Human hepatocellular carcinoma cell lines (HepG2) were subcutaneously implanted into the flank of 18 nude mice. The animals were randomly divided into six groups (n = 3); each received Sora (oral), MSCs (IV injection), MSCs (local injection), Sora + MSCs (IV injection), Sora + MSCs (local injection), or no treatment (the control group). Six weeks after tumor implantation, the mice were scarified and tumoral tissues were resected in their entirety. Histopathological and immunohistochemical evaluations were used to measure tumor proliferation and angiogenesis. Apoptotic cells were quantified using the TUNEL assay. Results. No significant difference was found in the tumor grade among the treatment groups. Differentiation features of the tumoral cells were histopathologically insignificant in all the groups. Tumor necrosis was highest in the hpMSC (local) + Sora group. Tumor cell proliferation was reduced in hpMSC (local) + Sora-treated and hpMSC (IV) + Sora-treated mice compared with the other groups. Apoptotic-positive cells occupied a greater proportion in the Sora, hpMSC (IV) + Sora, and hpMSC (local) + Sora groups. Conclusion. A combination of chemotherapy and MSC can yield to more favorable results in the treatment of HCC.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32328133

RESUMO

It has been suggested that depletion of adhesion molecules is one of the factors associated with or possibly responsible for multiple sclerosis (MS) progression. The aim of this study was to investigate the effect of forced and voluntary training before and after induction of experimental autoimmune encephalomyelitis (EAE) on accumulation of neural cell adhesion molecule (NCAM) and polysialic acid (PSA) in neuromuscular junction denervation in plantaris and soleus muscles in C57BL/6 female mice. A total of 40 female C57BL/6 mice, 10-week-old, were randomly divided into four groups, including induced control groups without EAE induction, induced EAE without training, and forced and voluntary training groups. Myelin oligodendrocyte glycoprotein peptide 35-55 (300 µg in saline; MOG 35-55; KJ Ross-Petersen ApS, Denmark) was injected subcutaneously at the base of the tail of each mouse. Clinical assessment of EAE was performed daily using a 15-point scoring system following immunization. Training groups performed the swimming program for 30 min/day, 5 times/week, for 4 weeks. Mice had access to a treadmill for one hour per day, 5times/week, for 4 weeks in individual cage. The mice were scarified, and the plantaris and soleus muscles were then isolated for investigation of proteins expression using IHC. An analysis of the preventive exercise (before) and recovery exercise (after) of the EAE was performed. Images of the stained sections were taken using a fluorescent microscope. Quantitative image analysis was performed using ImageJ software package. The obtained data from the mean percentage expression of PSA and NCAM in pre- and post-soleus and plantaris muscles showed that the highest and lowest expression levels of PSA and NCAM belonged to control and swim EAE (SE) groups, respectively. The low expression levels of PSA and NCAM were detected in rat with MS without intervention. In conclusion, the relationship between increasing levels of NCAM and PSA protein expression and voluntary and compulsory activity were detectable both in pre and post-soleus and plantaris. However, voluntary activity resulted in more expression levels of NCAM and PSA than that of compulsory. In conclusion, since it has been suggested that depletion of NCAM is one of the factors associated with or possibly responsible for MS progression, these findings show exercise MS progression may be reduced by increasing expression of exercise-related adhesion molecule such as NCAM and PSA (a glycan modification of the NCAM).

9.
Mater Sci Eng C Mater Biol Appl ; 98: 930-938, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813100

RESUMO

Hyperthermia-increasing temperature of cancerous tissue for a short period of time-is considered as an effective treatment for various cancer types such as malignant bone tumors. Superparamagnetic and ferromagnetic particles have been studied for their hyperthermic properties in treating various types of cancers. The activation of magnetic nanoparticles by an alternating magnetic field is currently being explored as a technique for targeted therapeutic heating of different tumors and is being studied as an adjuvant to conventional chemotherapy and radiation therapy. In the case of bone cancers, to increase the efficiency of treatment in the hyperthermia therapy, employed materials should support bone regeneration as well. Magnetite is one of the most attractive magnetic nanoceramics used in hyperthermia application. However, biocompatibility and bioactivity of this material have raised questions. There is a high demand for extremely efficient hyperthermia materials which are equally biocompatible to non-tumor cells and tissues. We report the development of a biocompatible and bioactive material with desirable magnetic properties that show excellent hyperthermia properties and can be used for destruction of the cancerous tissue in addition to supporting tissue regeneration for treatment of bone tumors. In the current study, iron (Fe3+)-containing HT nanostructured material was prepared, and its biocompatibility, bioactivity, and hyperthermia abilities were studied. The developed materials showed effective hyperthermic properties with increased biocompatibility as compared to magnetite.


Assuntos
Neoplasias Ósseas/terapia , Hipertermia Induzida , Ferro/farmacologia , Magnetismo , Nanopartículas de Magnetita/química , Silicatos/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pós , Difração de Raios X
10.
J Mol Neurosci ; 67(2): 247-257, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535775

RESUMO

Cell therapy and stem cell transplantation strategies have provided potential therapeutic approaches for the treatment of neurological disorders. Adipose-derived mesenchymal stem cells (ADMSCs) are abundant adult stem cells with low immunogenicity, which can be used for allogeneic cell replacement therapies. Differentiation of ADMSCs into acetylcholine-secreting motoneurons (MNs) is a promising treatment for MN diseases, such as spinal muscular atrophy (SMA), which is associated with the level of SMN1 gene expression. The SMN2 gene plays an important role in MN disorders, as it can somewhat compensate for the lack of SMN1 expression in SMA patients. Although the differentiation potential of ADMSCs into MNs has been previously established, overexpression of SMN2 gene in a shorter period with a longer survival has yet to be elucidated. Ponasterone A (PNA), an ecdysteroid hormone activating the PI3K/Akt pathway, was studied as a new steroid to promote SMN2 overexpression in MNs differentiated from ADMSCs. After induction with retinoic acid, sonic hedgehog, forskolin, and PNA, MN phenotypes were differentiated from ADMSCs, and immunochemical staining, specific for ß-tubulin, neuron-specific enolase, and choline acetyltransferase, was performed. Also, the results of real-time PCR assay indicated nestin, Pax6, Nkx2.2, Hb9, Olig2, and SMN2 expression in the differentiated cells. After 2 weeks of treatment, cultures supplemented with PNA showed a longer survival and a 1.2-fold increase in the expression of SMN2 (an overall 5.6-fold increase; *P ≤ 0.05), as confirmed by the Western blot analysis. The PNA treatment increased the levels of ChAT, Isl1, Hb9, and Nkx2 expression in MN-like cells. Our findings highlight the role of PNA in the upregulation of SMN2 genes from MSC-derived MN-like cells, which may serve as a potential candidate in cellular therapy for SMA patients.


Assuntos
Adipócitos/metabolismo , Ecdisterona/análogos & derivados , Células-Tronco Mesenquimais/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adolescente , Adulto , Idoso , Células Cultivadas , Ecdisterona/farmacologia , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Neurônios Motores/citologia , Proteínas Nucleares , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Fatores de Transcrição , Regulação para Cima
11.
J Cell Physiol ; 234(6): 9495-9503, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30362607

RESUMO

AIM: Hepatocellular carcinoma (HCC) is the most common liver malignancy and the second leading cause of cancer-related deaths in the world. Sorafenib is the first-line treatment of HCC. Although sorafenib has positive effects on the survival of patients, novel therapeutic strategies are needed to extend survival and improve the efficacy of sorafenib. This study combines sorafenib with mesenchymal stem cells (MSCs) as a new approach to enhance the efficacy of sorafenib. MATERIAL AND METHODS: A subcutaneous xenograft model of HCC, established by human HepG2 cell lines, was implanted into the flank of nude mice and was used to evaluate tumor growth after treatment with sorafenib alone or in combination with MSCs. The aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels were measured for safety assessment. Histopathological studies were performed using hematoxylin and eosin staining, and immunohistochemistry tests were performed to evaluate proliferation (Ki67) and angiogenesis (CD34). The TUNEL assay was used to detect apoptosis and measure the expression of major inflammatory cytokines (IL-1a, IL-10, and TNF-α) with real-time polymerase chain reaction. RESULT: Sorafenib, in combination with MSCs, strongly inhibited tumor growth in the xenograft model. Furthermore, the combination therapy significantly inhibited HCC cell proliferation, decreased tumor angiogenesis, and induced apoptosis and maintained antitumor-associated anti-inflammatory effects of MSCs. CONCLUSION: This combination therapy strategy could be used as a new therapeutic approach to the treatment of HCC that significantly improves upon the results achieved using sorafenib as monotherapy.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Sorafenibe/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA