Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 263, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488573

RESUMO

BACKGROUND: The purpose of this study was to demonstrate the in vitro anti-nephritis activity of Rostellularia procumbens (L.) Nees (R. procumbens) extract and to make a preliminary investigation of its anti-nephritis mechanism. METHODS: A prediction network was built that describes the relationship between R. procumbens and CGN. Then, the potential targets for R. procumbens against CGN were imported into the DAVID database for Gene Ontology (GO) biological annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A lipopolysaccharide (LPS)-stimulated rat mesangial cell HBZY-1 model in vitro was used to examine the anti-inflammatory activity of R. procumbens extract. RNA-seq was utilized to investigate differentially expressed genes (DEGs) and enriched signaling pathways between groups. Finally, qPCR was used for the validation analysis of the experimental results. RESULTS: The results of network pharmacology showed that R. procumbens exerts its therapeutic effect on CGN through the AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt, IL-17 signaling pathway, and so on. R. procumbens n-butanol extract (J-NE) can effectively relieve inflammation in HBZY-1. The results of KEGG pathway enrichment suggest that J-NE attenuated CGN was associated with the IL-17 signaling pathway, and the results of RNA-seq were consistent with network pharmacology. Targets enriched in the IL-17 signaling pathway, including Chemokine (C-C motif) ligand 7 (CCL7), Lipocalin 2 (LCN2), Chemokine (C-C motif) ligand 2 (CCL2), and Chemokine (C-X-C motif) ligand 1 (CXCL1), have been identified as crucial targets attenuating CGN by J-NE. CONCLUSION: R. procumbens is a promising pharmacological candidate for the treatment of CGN in the present era.


Assuntos
Glomerulonefrite , Nefrite , Animais , Ratos , Interleucina-17 , Farmacologia em Rede , RNA-Seq , Fosfatidilinositol 3-Quinases , Doença Crônica , Extratos Vegetais/farmacologia
2.
Phytomedicine ; 113: 154736, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907143

RESUMO

BACKGROUND: Rostellularia procumbens (L) Nees. is an effective traditional Chinese herbal medicine for the treatment of patients with chronic glomerulonephritis (CGN) in the clinic. However, the underlying molecular mechanisms need further elucidation. PURPOSE: This study aims to investigate the renoprotective mechanisms of n-butanol extract from Rostellularia procumbens (L) Nees. (J-NE) in vivo and in vitro. METHODS: The components of J-NE were analyzed by UPLC-MS/MS. In vivo, the nephropathy model was induced in mice by tail vein injection with adriamycin (10 mg·kg-1), and mice were treated with vehicle or J-NE or benazepril by daily gavage. In vitro, MPC5 cells exposed to adriamycin (0.3 µg/ml) were treated with J-NE. The effects of J-NE inhibit podocyte apoptosis and protect against adriamycin-induced nephropathy were determined by Network pharmacology, RNA-seq, qPCR, ELISA, immunoblotting, flow cytometry, and TUNEL assay, according to the experimental protocols. RESULT: The results showed that treatment significantly improved ADR-induced renal pathological changes, and the therapeutic mechanism of J-NE was related to the inhibition of podocyte apoptosis. Further molecular mechanism studies found that J-NE inhibited inflammation, increase the proteins expression levels of Nephrin and Podocin, reduce TRPC6 and Desmin expression levels and calcium ion levels in podocytes, and decrease the proteins expression levels of PI3K, p-PI3K, Akt and p-Akt to attenuated apoptosis. Furthermore, 38 compounds of J-NE were identified. CONCLUSION: J-NE exerted the renoprotective effects by inhibiting podocyte apoptosis, which provides effective evidence for the treatment of J-NE targeting renal injury in CGN.


Assuntos
Doxorrubicina , Nefropatias , Camundongos , Animais , Doxorrubicina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Fosfatidilinositol 3-Quinases
3.
Front Pharmacol ; 11: 581277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132913

RESUMO

There has been a large global outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), representing a major public health issue. In China, combination therapy, including traditional Chinese medicine (TCM) as a treatment for COVID-19 has been used widely. "Fei Yan No. 1" (QFDYG) is a formula recommended by the Hubei Government to treat COVID-19. A retrospective study of 84 COVID-19 patients from Hubei Provincial Hospital of TCM and Renmin Hospital of Hanchuan was conducted to explore the clinical efficacy of QFDYG combination therapy. TCMSP and YaTCM databases were used to determine the components of all Chinese herbs in QFDYG. Oral bioavailability (OB) ≥ 30% and drug-like (DL) quality ≥ 0.18 were selected as criteria for screening the active compounds identified within the TCMSP database. The targets of active components in QFDYG were determined using the Swiss TargetPrediction (SIB) and Targetnet databases. The STRING database and the Network Analyzer plugin in Cytoscape were used to obtain protein-protein interaction (PPI) network topology parameters and to identify hub targets. Gene Ontology (GO) enrichment was conducted using FunRich version 3.1.3, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment using ClueGO version 2.5.6 software. PPI and compound-pathway (C-T) networks were constructed using Cytoscape 3.6.0. Compared with the control group, combined treatment with QFDYG resulted in a significantly higher rate of patients recovering from symptoms and shorter the time. After 14 days of treatment, QFDYG combined treatment increased the proportion of patients testing negative for SARS-CoV-2 nucleic acid by RT-PCR. Compared with the control group, promoting focal absorption and inflammation as viewed on CT images. GO and KEGG pathway enrichment indicated that QFDYG principally regulated biological processes, such as inflammation, an immune response, and apoptosis. The present study revealed that QFDYG combination therapy offered particular therapeutic advantages, indicating that the theoretical basis for the treatment of COVID-19 by QFDYG may play an antiviral and immune response regulation through multiple components, targets, and pathways, providing reference for the clinical treatment of COVID-19.

4.
Curr Med Sci ; 40(5): 917-930, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32980902

RESUMO

This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and monocyte chemotactic protein-1 (MCP-1). The TGF-ß1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1ß and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-ß/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-ß1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Proteínas Hedgehog/genética , Fator de Crescimento Transformador beta1/genética , Obstrução Ureteral/tratamento farmacológico , Animais , Medicamentos de Ervas Chinesas/química , Fibrose/etiologia , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/genética , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
5.
Front Pharmacol ; 11: 425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372953

RESUMO

Taohe-Chengqi decoction (THCQ), a classical traditional Chinese medicinal (TCM) formula, has been extensively used for treating chronic kidney disease (CKD). However, the biological activity and mechanisms of action of its constituents against renal fibrosis have not yet been investigated thoroughly. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of the n-butanol extract of THCQ (NE-THCQ) against renal fibrosis. The n-butanol extract of THCQ was prepared by the solvent extraction method. The components of NE-THCQ were analyzed using UPLC-Q/TOF-MS/MS techniques and applied for screening the active components of NE-THCQ according to their oral bioavailability and drug-likeness index. Then, we speculated the potential molecular mechanisms of NE-THCQ against renal fibrosis through pharmacological network analysis. Based on data mining techniques and topological parameters, gene ontology, and pathway enrichment, we established compound-target (C-T), protein-protein interaction (PPI) and compound-target-pathway (C-T-P) networks by Cytoscape to identify the hub targets and pathways. Finally, the potential molecular mechanisms of NE-THCQ against renal fibrosis, as predicted by the network pharmacology analyses, were validated experimentally in renal tubular epithelial cells (HK-2) in vitro and against unilateral ureteral obstruction models in the rat in vivo. We identified 26 components in NE-THCQ and screened seven bioactive ingredients. A total of 118 consensus potential targets associated with renal fibrosis were identified by the network pharmacology approach. The experimental validation results demonstrated that NE-THCQ might inhibit the inflammatory processes, reduce ECM deposition and reverse EMT via PI3K/AKT/mTOR and HIF-1α/VEGF signaling pathways to exert its effect against renal fibrosis. This study identified the potential ingredients of the NE-THCQ by UPLC-Q/TOF-MS/MS and explained the possible mechanisms of NE-THCQ against renal fibrosis by integrating network pharmacology and experimental validation.

6.
Curr Med Sci ; 40(1): 138-144, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166676

RESUMO

This study examined anti-cancer compounds present in the chloroform extract of the Chinese medicine formula Shenqi San (CE-SS). Silica gel column chromatography, Sephadex LH-20, octadecylsilyl (ODS) column chromatography, and high performance liquid chromatography (HPLC) were used to separate the compounds from CE-SS. The structural formulas of the separated compounds were determined using 1D 1H and 13C experiments as well as high resolution electrospray ionization mass spectroscopy (HRESIMS). The corresponding results were compared with the reported literature data. A total of six compounds were separated and their structures were identified on the basis of corresponding spectroscopic and physico-chemical properties. They were Saikogenin F (I), Prosaikogenin D (II), Prosaikogenin F (III), ß-sitosterol (IV), 3ß,16ß,23-trihydroxy-13,28-epoxyurs-11-ene-3-O-ß-D-glucopyranoside (V), and methyl ursolic acid (VI). The separated compounds were evaluated in vitro for their inhibitory ability against the proliferation of A549 cells via MTT assay. Apoptosis was investigated using Annexin V-FITC/propidium iodide (PI) by flow cytometry. Apoptosis-associated proteins were examined by Western blotting. All the compounds were observed to have inhibitory activities against the proliferation of A549 cells to different degrees. Flow cytometry showed that compound V increased the proportion of apoptotic A549 cells in a dose-dependent manner. Western blotting showed that compound V increased the expression of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-poly ADP-ribose polymerase (PARP), and decreased the expression of Bcl-2. These results indicated that compound V featured a significant inhibitory effect on A549 cells when compared with other compounds, and it may be considered a potential drug against cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Clorofórmio/química , Medicamentos de Ervas Chinesas/farmacologia , Células A549 , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Extração Líquido-Líquido , Estrutura Molecular
7.
Free Radic Biol Med ; 152: 504-515, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31784059

RESUMO

The high expression of fatty acid synthase (FAS) in tumor cells is consistent with their elevated requirement for fatty acids for cell membrane synthesis and energy supply to support their almost unlimited proliferation. The expression levels of FAS in tumor cells are related to their proliferation, invasion, and metastasis. This study investigated the possible bioactive ingredients (fraxin, esculetin, scopolin et al.) of Cortex Fraxini and their effects on the interaction between specific proteins. We used microscale thermophoresis (MST) to show that our target protein, FAS (screened by combining transcriptome and network pharmacology), bound to the active compounds in Cortex Fraxini. It was found that FAS bound strongly to Glucose-6-phosphate isomerase (GPI), and that scopolin could affect this interaction by proteomics and MST. The results of this study demonstrate that the active compounds in Cortex Fraxini could play an anti-tumor role by binding to FAS and inhibiting the interactions between FAS and GPI to affect glucose and lipid metabolism, and that the protein pathway is a potential novel target for tumor treatment.


Assuntos
Medicamentos de Ervas Chinesas , Ácido Graxo Sintases , Aesculus , Ácido Graxo Sintases/genética , Ácidos Graxos , Glucose-6-Fosfato Isomerase
8.
J Huazhong Univ Sci Technolog Med Sci ; 37(5): 766-771, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29058293

RESUMO

The main purpose of this study was to investigate the active components of the Chinese medicine formula Shenqi San (SS) by high performance liquid chromatography with diode array detector and electrospray ionization-hybrid quadrupole time-of-flight mass spectrum (HPLC-DADESI- QTOF-MS), and demonstrate the anticancer mechanism of SS on human lung adenocarcinoma A549 cells by evaluating the cell proliferation and apoptosis induction. The chloroform extraction of SS (CE-SS) was extracted from SS, while HPLC-DAD-ESI-QTOF-MS assay was performed to identify components of CE-SS. MTT assay was used to quantify the proliferation of A549 cells with the treatment of CE-SS. Apoptosis analysis was carried out by detecting phosphatidylserine (PS) externalization using the Annexin V-FITC Apoptosis Detection Kit and the stained cells were analyzed with a flow cytometer. DAPI staining assay was carried out to observe morphological characteristics of apoptotic cells. Western blotting was used to detect the expression of important signaling proteins including caspase-3, -8, -9, p53, Bax and Bcl-2. Eight compounds were identified through HPLC-DAD-ESI-QTOF-MS analysis and 3-pyridine carboxylic acid, barbatin C, scutebarbatine F and barbatine D might be the main compounds responsible for the antitumor effect of CE-SS. CE-SS suppressed the proliferation of lung cancer A549 cells in a time- and dose-dependent manner. By Annexin V-FITC/PI double staining, we found that treatment with CE-SS induced apoptosis in A549 cells. After 24-h exposure to CE-SS, the expression of cleaved-caspase-9, cleaved-caspase-8 and cleaved-caspase-3 protein was activated, the expression of p53 protein increased while the ratio of Bax/Bcl-2 also increased. This study identified the eight compounds of CE-SS, and demonstrated their anticancer effect on human lung adenocarcinoma A549 cells via induction of apoptosis.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/metabolismo , Extratos Vegetais/farmacologia , Células A549 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão , Antineoplásicos Fitogênicos/química , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA