Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 41(2): 585-600, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327741

RESUMO

The transition of healthy arteries and cardiac valves into dense, cell-rich, calcified, and fibrotic tissues is driven by a complex interplay of both cellular and molecular mechanisms. Specific cell types in these cardiovascular tissues become activated following the exposure to systemic stimuli including circulating lipoproteins or inflammatory mediators. This activation induces multiple cascades of events where changes in cell phenotypes and activation of certain receptors may trigger multiple pathways and specific alterations to the transcriptome. Modifications to the transcriptome and proteome can give rise to pathological cell phenotypes and trigger mechanisms that exacerbate inflammation, proliferation, calcification, and recruitment of resident or distant cells. Accumulating evidence suggests that each cell type involved in vascular and valvular diseases is heterogeneous. Single-cell RNA sequencing is a transforming medical research tool that enables the profiling of the unique fingerprints at single-cell levels. Its applications have allowed the construction of cell atlases including the mammalian heart and tissue vasculature and the discovery of new cell types implicated in cardiovascular disease. Recent advances in single-cell RNA sequencing have facilitated the identification of novel resident cell populations that become activated during disease and has allowed tracing the transition of healthy cells into pathological phenotypes. Furthermore, single-cell RNA sequencing has permitted the characterization of heterogeneous cell subpopulations with unique genetic profiles in healthy and pathological cardiovascular tissues. In this review, we highlight the latest groundbreaking research that has improved our understanding of the pathological mechanisms of atherosclerosis and future directions for calcific aortic valve disease.


Assuntos
Doenças Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Transcriptoma , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/patologia , Tomada de Decisão Clínica , Humanos , Fenótipo , Medicina de Precisão , Fluxo de Trabalho
2.
Circ Res ; 113(1): 72-7, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23616621

RESUMO

RATIONALE: We previously showed that early calcification of atherosclerotic plaques associates with macrophage accumulation. Chronic renal disease and mineral imbalance accelerate calcification and the subsequent release of matrix vesicles (MVs), precursors of microcalcification. OBJECTIVE: We tested the hypothesis that macrophage-derived MVs contribute directly to microcalcification. METHODS AND RESULTS: Macrophages associated with regions of calcified vesicular structures in human carotid plaques (n=136 patients). In vitro, macrophages released MVs with high calcification and aggregation potential. MVs expressed exosomal markers (CD9 and TSG101) and contained S100A9 and annexin V. Silencing S100A9 in vitro and genetic deficiency in S100A9-/- mice reduced MV calcification, whereas stimulation with S100A9 increased calcification potential. Externalization of phosphatidylserine after Ca/P stimulation and interaction of S100A9 and annexin V indicated that a phosphatidylserine-annexin V-S100A9 membrane complex facilitates hydroxyapatite nucleation within the macrophage-derived MV membrane. CONCLUSIONS: Our results support the novel concept that macrophages release calcifying MVs enriched in S100A9 and annexin V, which contribute to accelerated microcalcification in chronic renal disease.


Assuntos
Anexina A5/metabolismo , Calcinose/metabolismo , Calgranulina B/metabolismo , Doenças das Artérias Carótidas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/deficiência , Calcinose/patologia , Cálcio/farmacologia , Calgranulina B/genética , Doenças das Artérias Carótidas/patologia , Linhagem Celular , Vesículas Citoplasmáticas/ultraestrutura , Durapatita/metabolismo , Humanos , Macrófagos/ultraestrutura , Macrófagos Peritoneais/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilserinas/metabolismo , Fósforo/farmacologia , Placa Aterosclerótica/patologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia
3.
Circ Res ; 101(2): 111-3, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17641231
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA