RESUMO
Ceasium-137 and 90Sr are major artificial radionuclides that have been released into the environment. Soil-to-plant transfer of radionuclides is an important route to food contamination. The radionuclide activity concentrations in crops must be quantitatively predicted for estimating the internal radiation doses from food ingestion. In this study, soil and potato samples were collected from three study sites contaminated with different sources of 137Cs and 90Sr: Aomori Prefecture (global fallout) and two accidental release areas (Fukushima Prefecture and the Chornobyl exclusion zone). The 137Cs activity concentrations in the soil and potato samples widely ranged from 1.0 to 250,000 and from 0.048 to 200,000 Bq kg-1 dry weight, respectively. The soil-to-potato transfer factor of 137Cs also ranged widely (0.0015-1.1) and decreased with increasing concentration of exchangeable K. Meanwhile, the activity concentrations of 90Sr in the soil and potato samples were 0.50-64,000 and 0.027-18,000 Bq kg-1 dry weight respectively, and the soil-to-potato transfer factor of 90Sr was 0.023-0.74, decreasing with increasing concentration of exchangeable Ca. The specific activity ratios of 137Cs/Cs and 90Sr/Sr in the exchangeable fraction were similar to those in potatoes, with a factor of 3 in the ±95 % confidence intervals over six orders of magnitude and a factor of 2 in the ±95 % confidence intervals over five orders of magnitude, respectively. According to the data, the accuracy of predicting the activity concentrations of 137Cs and 90Sr in potatoes can be improved by applying the specific activity ratios of 137Cs/Cs and 90Sr/Sr in the exchangeable fraction. This approach accounts for variable factors such as the effects of K and Ca fertilization and soil characteristics. It also emphasizes the benefit of determining the stable Cs and Sr concentrations in potatoes and other crops prior to possible future contamination.
Assuntos
Acidente Nuclear de Chernobyl , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solanum tuberosum , Solo , Fator de Transferência , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análiseRESUMO
A criticality accident occurred at the uranium conversion plant in Tokaimura, Ibaraki Prefecture, Japan on 30 September 1999. When uranyl nitrate was overloaded to a critical mass level, uncontrolled fission reaction occurred. A procedure was carried out according to the JCO manual, although not an officially approved manual. Three workers were heavily exposed to neutrons andγ-rays produced by nuclear fission, and they subsequently developed acute radiation syndrome (ARS). The average doses to the whole body of the three workers were approximately 25, 9, and 3 GyEq (biologically equivalent dose ofγ-exposure), respectively; dose distribution analysis later revealed extreme heterogeneity of these doses in two workers. They were triaged according to the predicted clinical needs. Two of these workers developed severe bone marrow failure and received haematopoietic stem cell transplantation: one with peripheral stem cell transplantation from his Human Leukocyte Antigen compatible sister and the other with umbilical cord blood transplantation. The graft was initially successful in both workers; autologous haematopoietic recovery was observed after donor/recipient mixed chimerism in one of them. Despite of all medical efforts available including haematopoietic stem cell transplantation, investigational drugs, skin graft, two workers died of multiple organ involvement and failure 83 and 211 days after the accident, respectively. Clinically as well as pathologically, the direct cause of death was deemed to be intractable gastrointestinal (GI) bleeding in one, and thoraco-abdominal compartment syndrome due to dermal fibrosis/sclerosis in the other. The third worker also developed bone marrow suppression but was treated with granulocyte colony-stimulating factor. He recovered without major complications and is now under periodical medical follow-up. These experiences suggest that treatment of bone marrow is not a limiting factor for saving the life of ARS victims severely exposed. Successful treatment of other organs such as lungs, skin, and GI tract is also essential. Furthermore, the whole-body dose may not always reflect the prognosis of ARS victims because of the nature of accidental exposure, heterogenous exposure.
Assuntos
Lesões por Radiação , Liberação Nociva de Radioativos , Urânio , Humanos , Masculino , Nêutrons , Doses de RadiaçãoRESUMO
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Among the most common manifestations of PD are sleep problems, which are coupled with the adverse effects of dopaminergic therapies (DT). A non-pharmacological solution for these sleep problems has been sought to avoid additional pharmacological intervention. Here, we show that bright light therapy (BLT) is effective for improving sleep in Japanese PD patients receiving DT. Furthermore, experimental evaluation of peripheral clock gene expression rhythms revealed that most PD patients receiving DT who experienced improved sleep following BLT showed a circadian phase shift, indicating the existence of a correlation between circadian modulation and sleep improvement. Conversely, this result indicates that sleep problems in PD patients receiving DT may arise at least in part as a result of circadian dysfunction. Indeed, we found that chronic dopaminergic stimulation induced a rapid attenuation of autonomous oscillations of clock gene expression in ex vivo cultured mouse suprachiasmatic nucleus (SCN) at the single neuron level. In conclusion, BLT is a promising medical treatment for improving sleep in PD patients receiving DT. This BLT-induced improvement may be due to the restoration of circadian function.
Assuntos
Ritmo Circadiano , Luz , Doença de Parkinson/fisiopatologia , Sono , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fototerapia , Sono/genética , Sono/efeitos da radiaçãoRESUMO
PURPOSE: A fibroblast growth factor (FGF) 1-FGF2 chimera (FGFC) was created previously and showed greater structural stability than FGF1. This chimera was capable of stimulating epithelial cell proliferation much more strongly than FGF1 or FGF2 even without heparin. Therefore FGFC was expected to have greater biologic activity in vivo. This study evaluated and compared the protective activity of FGFC and FGF1 against radiation-induced intestinal injuries. METHODS AND MATERIALS: We administered FGFC and FGF1 intraperitoneally to BALB/c mice 24 h before or after total-body irradiation (TBI). The numbers of surviving crypts were determined 3.5 days after TBI with gamma rays at doses ranging from 8 to 12 Gy. RESULTS: The effect of FGFC was equal to or slightly superior to FGF1 with heparin. However, FGFC was significantly more effective in promoting crypt survival than FGF1 (p < 0.01) when 10 µg of each FGF was administered without heparin before irradiation. In addition, FGFC was significantly more effective at promoting crypt survival (p < 0.05) than FGF1 even when administered without heparin at 24 h after TBI at 10, 11, or 12 Gy. We found that FGFC post treatment significantly promoted 5-bromo-2'-deoxyuridine incorporation into crypts and increased crypt depth, resulting in more epithelial differentiation. However, the number of apoptotic cells in FGFC-treated mice decreased to almost the same level as that in FGF1-treated mice. CONCLUSIONS: These findings suggest that FGFC strongly enhanced radioprotection with the induction of epithelial proliferation without exogenous heparin after irradiation and is useful in clinical applications for both the prevention and post treatment of radiation injuries.
Assuntos
Proliferação de Células/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Jejuno/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/química , Heparina/uso terapêutico , Injeções Intraperitoneais , Jejuno/patologia , Jejuno/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/química , Proteínas Recombinantes de Fusão/química , Irradiação Corporal Total/efeitos adversosRESUMO
BACKGROUND: Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. RESULTS: We developed the in vitro real-time oscillation monitoring system (IV-ROMS) by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid) have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Roralpha mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-gamma--and MAPKs (ERK, JNK, p38MAPK)-independent. CONCLUSION: Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight novel and four known molecules to be potential entrainment factors for circadian clocks, indicating that this assay system is a powerful and useful tool in initial screenings.
Assuntos
Ritmo Circadiano , Técnicas Genéticas , Oscilometria , Animais , Animais Geneticamente Modificados , Biologia/métodos , Proteínas de Ciclo Celular , Linhagem Celular , Sistemas Computacionais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hipotálamo/fisiologia , Hibridização In Situ , Técnicas In Vitro , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , PPAR gama/metabolismo , Peptídeos/química , Proteínas Circadianas Period , Fotoperíodo , Regiões Promotoras Genéticas , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Núcleo Supraquiasmático/fisiologia , Fatores de Tempo , Fatores de Transcrição/genética , Regulação para CimaRESUMO
Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.