Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423439

RESUMO

The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.


Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Periósteo , Biomimética , Óleo de Fígado de Bacalhau , Poliésteres/química , Engenharia Tecidual/métodos
2.
Neurosci Bull ; 32(1): 115-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26781880

RESUMO

Depression is the most prevalent debilitating mental illness; it is characterized as a disorder of mood, cognitive function, and neurovegetative function. About one in ten individuals experience depression at some stage of their lives. Antidepressant drugs are used to reduce the symptoms but relapse occurs in ~20% of patients. However, alternate therapies like brain stimulation techniques have shown promising results in this regard. This review covers the brain stimulation techniques electroconvulsive therapy, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, vagus nerve stimulation, and deep brain stimulation, which are used as alternatives to antidepressant drugs, and elucidates their research and clinical outcomes.


Assuntos
Depressão/terapia , Terapia por Estimulação Elétrica/métodos , Eletroconvulsoterapia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA