RESUMO
Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen, can overproduce an exopolysaccharide alginate resulting in a unique phenotype called mucoidy. Alginate is linked to chronic lung infections resulting in poor prognosis in patients with cystic fibrosis (CF). Understanding the pathways that regulate the production of alginate can aid in the development of novel therapeutic strategies targeting the alginate formation. Another disease-related phenotype is the small colony variant (SCV). SCV is due to the slow growth of bacteria and often associated with increased resistance to antimicrobials. In this paper, we first show a method of culturing a genetically defined form of P. aeruginosa SCV due to pyrimidine biosynthesis mutations. Supplementation of nitrogenous bases, uracil or cytosine, returns the normal growth to these mutants, demonstrating the presence of a salvage pathway that scavenges free bases from the environment. Next, we discuss two methods for the measurement of bacterial alginate. The first method relies on the hydrolysis of the polysaccharide to its uronic acid monomer followed by derivatization with a chromogenic reagent, carbazole, while the second method uses an ELISA based on a commercially available, alginate-specific mAb. Both methods require a standard curve for quantitation. We also show that the immunological method is specific for alginate quantification and may be used for the measurement of alginate in the clinical specimens.
Assuntos
Alginatos/análise , Técnicas Bacteriológicas/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Alginatos/metabolismo , Meios de Cultura/metabolismo , Fibrose Cística/microbiologia , Humanos , Mutação , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pirimidinas/metabolismoRESUMO
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronic lung infections in patients with cystic fibrosis (CF). The current preferred treatment for CF lung infections includes inhaled tobramycin (TOB); however, studies suggest TOB cannot effectively inhibit biofilm formation. Using an NIH small compounds drug library approved for safe use in humans, we identified rifaximin (RFX), a semisynthetic, rifamycin family, nonsystemic antibiotic that inhibits alginate production and growth in P. aeruginosa Inhibition of alginate production was further analyzed using the uronic acid carbazole assay and a promoter reporter assay that measures the transcription of the alginate biosynthetic operon. Compared to TOB, RFX significantly reduced alginate production in laboratory and CF sputum isolates of P. aeruginosa In addition, RFX showed a narrow range of MICs when measured with multidrug-resistant bacterial species of clinical relevance, synergistic activities with TOB or amikacin against clinical isolates, as well as reduction toward in vitro preformed biofilms. In C57BL/6 mice, penetration of nebulized TOB into the lungs was shown at a higher level than that of RFX. Further, in vivo assessment using a DBA/2 mouse lung infection model found increased survival rates with a single-dose treatment of nebulized RFX and decreased P. aeruginosa PAO1 bioburden with a multiple-dose treatment of RFX plus TOB. In addition, mice treated with a single exposure to dimethyl sulfoxide (DMSO), a solvent that dissolves RFX, showed no apparent toxicity. In summary, RFX may be used to supplement TOB inhalation therapy to increase efficacy against P. aeruginosa biofilm infections.
Assuntos
Antibacterianos/farmacologia , Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Rifaximina/farmacologia , Tobramicina/farmacologia , Alginatos/metabolismo , Amicacina/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Testes de Sensibilidade Microbiana/métodos , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Escarro/microbiologiaRESUMO
Mucoidy due to alginate overproduction by the Gram-negative bacterium Pseudomonas aeruginosa facilitates chronic lung infections in patients with cystic fibrosis (CF). We previously reported that disruption in de novo synthesis of pyrimidines resulted in conversion to a nonmucoid small-colony variant (SCV) in the mucoid P. aeruginosa strain (PAO581), which has a truncated anti-sigma factor, MucA25, that cannot sequester sigma factor AlgU (AlgT). Here, we showed that supplementation with the nitrogenous bases uracil or cytosine in growth medium complemented the SCV to normal growth, and nonmucoidy to mucoidy, in these mucA25 mutants. This conversion was associated with an increase in intracellular levels of UMP and UTP suggesting that nucleotide restoration occurred via a salvage pathway. In addition, supplemented pyrimidines caused an increase in activity of the alginate biosynthesis promoter (P algD ), but had no effect on P algU , which controls transcription of algU Cytosolic levels of AlgU were not influenced by uracil supplementation, yet levels of RpoN, a sigma factor that regulates nitrogen metabolism, increased with disruption of pyrimidine synthesis and decreased after supplementation of uracil. This suggested that an elevated level of RpoN in SCV may block alginate biosynthesis. To support this, we observed that overexpressing rpoN resulted in a phenotypic switch to nonmucoidy in PAO581 and in mucoid clinical isolates. Furthermore, transcription of an RpoN-regulated promoter increased in the mutants and decreased after uracil supplementation. These results suggest that the balance of RpoN and AlgU levels may regulate growth from SCV to mucoidy through sigma factor competition for P algDIMPORTANCE Chronic lung infections with P. aeruginosa are the main cause of morbidity and mortality in patients with cystic fibrosis. This bacterium overproduces a capsular polysaccharide called alginate (also known as mucoidy), which aids in bacterial persistence in the lungs and in resistance to therapeutic regimens and host immune responses. The current study explores a previously unknown link between pyrimidine biosynthesis and mucoidy at the level of transcriptional regulation. Identifying/characterizing this link could provide novel targets for the control of bacterial growth and mucoidy. Inhibiting mucoidy may improve antimicrobial efficacy and facilitate host defenses to clear the noncapsulated P. aeruginosa bacteria, leading to improved prognosis for patients with cystic fibrosis.