Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(8): 4295-4308, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036706

RESUMO

In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.


Assuntos
Bactérias , Petróleo , Bactérias/genética , Mar Mediterrâneo , Fitoplâncton , RNA Ribossômico 16S/genética
2.
Biology (Basel) ; 9(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517017

RESUMO

The effect of dietary omega-6 long-chain polyunsaturated fatty acid (LC-PUFA) on host microbiome and gut associated immune function in fish is unexplored. The effect of dietary supplementation with the omega-6 LC-PUFA-rich microalga Lobosphaera incisa wild type (WT) and its delta-5 desaturase mutant (MUT), rich in arachidonic-acid and dihomo-gamma-linolenic acid (DGLA), respectively, on intestinal gene expression and microbial diversity was analyzed in zebrafish. For 1 month, fish were fed diets supplemented with broken biomass at 7.5% and 15% (w/w) of the two L. incisa strains and a control nonsupplemented commercial diet. Dietary supplementation resulted in elevated expression of genes related to arachidonic acid metabolism - cyclooxygenase 2 (cox-2), lipoxygenase 1(lox-1), anti-inflammatory cytokine - interleukin 10 (il-10), immune defense - lysozyme (lys), intestinal alkaline phosphatase (iap), complement (c3b), and antioxidants - catalase (cat), glutathione peroxidase (gpx). Microbiome analysis of the gut showed higher diversity indices for microbial communities in fish that were fed the supplemented diets compared to controls. Different treatment groups shared 237 operational taxonomic units (OTUs) that corresponded to the core microbiome, and unique OTUs were evident in different dietary groups. Overall, the zebrafish gut microbiome was dominated by the phylum Fusobacteria and Proteobacteria (averaging 38.4% and 34.6%, respectively), followed by Bacteroidetes (12.9%), Tenericutes, Planctomycetes, and Actinobacteria (at 3.1%-1.3%). Significant interaction between some of the immune-related genes and microbial community was demonstrated.

3.
Acta Derm Venereol ; 98(2): 256-261, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28815268

RESUMO

Dead Sea climatotherapy (DSC) is a therapeutic modality for a variety of chronic skin conditions, yet there has been scarce research on the relationship between the cutaneous microbiota and disease states in response to DSC. We characterized the skin bacterial and fungal microbiome of healthy volunteers who underwent DSC. Bacterial community diversity remained similar before and after treatment, while fungal diversity was significantly reduced as a result of the treatment. Individuals showed greater inter-individual than temporal bacterial community variance, yet the opposite was true for fungal community composition. We further identified Malassezia as the genus driving temporal mycobiome variations. The results indicate that the microbiome remains stable throughout DSC, while the mycobiome undergoes dramatic community changes. The results of this study will serve as an important baseline for future investigations of microbiome and mycobiome temporal phenomena in diseased states.


Assuntos
Bactérias/crescimento & desenvolvimento , Balneologia/métodos , Climatoterapia/métodos , Fungos/crescimento & desenvolvimento , Helioterapia/métodos , Microbiota , Pele/microbiologia , Bactérias/classificação , Feminino , Fungos/classificação , Voluntários Saudáveis , Humanos , Israel , Malassezia/crescimento & desenvolvimento , Masculino , Micobioma , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA