Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17194, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821483

RESUMO

Fungicides or insecticides are popular means of controlling a variety of pathogens and insect pests; however, they can cause harmful effects on both human health and the environment. Different researchers have suggested using plant extracts, which have shown promise in managing fungi and insects. The purpose of this investigation was to explore the antifungal activities of an acetone extract made from the leaves of Indian Hawthorn (HAL) against phytopathogens that are known to harm maize crops, Fusarium verticillioides (OQ820154) and Rhizoctonia solani (OQ820155), and to evaluate the insecticidal property against Aphis gossypii Glover aphid. The HAL extract demonstrated significant antifungal activity against the two fungal pathogens tested, especially at the high dose of 2000 µg/mL. Laboratory tests on the LC20 of HAL extract (61.08 mg/L) versus buprofezin 25% WP (0.0051 mg/L) were achieved on A. gossypii Glover. HAL extract diminished the nymph's production over 72 h and their total reproductive rate. This extract was like buprofezin 25% WP in decreasing the daily reproductive rate, reproductive period, and mean survival percentage. Nevertheless, the newly-born nymphs of treated females with HAL extract attained the highest reduction in survival percentage at 46.00%. Equalized prolongations on the longevity of nymphs to 9.33, 8.33, and 7 days and the total life cycle to 15.00, 14.00, and 12.67 days were realized by HAL extract, buprofezin 25% WP, and the control, respectively. The olfactory choice test on the aphids showed the minimum attraction rate to HAL extract. The HPLC of HAL extract comprised an abundance of phenolic compounds (ferulic acid, gallic acid, 4-hydroxybenzoic acid, salicylic acid, ellagic acid, and pyrogallol), and the concentrations of these compounds vary widely, with salicylic acid being the most concentrated at 25.14 mg/mL. Among the flavonoids, epicatechin has the highest concentration at 11.69 mg/mL. The HAL extract GC-MS consists of various organic compounds, including sesquiterpenes, cyclopropenes, fatty acids, steroids, alcohols, ketones, esters, bufadienolides, opioids, and other organic compounds. The most abundant compounds in the sample are n-hexadecanoic acid (12.17%), followed by 5α, 7αH, 10α-eudesm-11-en-1α-ol (9.43%), and cis-13-octadecenoic acid (5.87%). Based on the findings, it can be inferred that the HAL extract may be a viable option for plants to combat both fungal and insect infestations. This presents an encouraging prospect for utilizing a natural and sustainable approach toward long-term pest management in plants.


Assuntos
Afídeos , Crataegus , Inseticidas , Animais , Humanos , Feminino , Inseticidas/farmacologia , Inseticidas/química , Antifúngicos/farmacologia , Compostos Fitoquímicos/farmacologia , Insetos , Extratos Vegetais/farmacologia , Salicilatos/farmacologia
2.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375234

RESUMO

Nanotechnology is playing a critical role in several essential technologies with nanoscale structures (nanoparticles) in areas of the environment and biomedicine. In this work, the leaf extract of Pluchea indica was utilized to biosynthesize zinc oxide nanoparticles (ZnONPs) for the first time and evaluated for antimicrobial and photocatalytic activities. Different experimental methods were used to characterize the biosynthesized ZnONPs. The biosynthesized ZnONPs showed maximum Ultraviolet-visible spectroscopy (UV-vis) absorbance at a wavelength of 360 nm. The X-Ray diffraction (XRD) pattern of the ZnONPs exhibits seven strong reflection peaks, and the average particle size was 21.9 nm. Fourier-transform infrared spectroscopy (FT-IR) spectrum analysis reveals the presence of functional groups that help in biofabrication. The existence of Zn and O was confirmed by the Energy-dispersive X-ray (EDX) spectrum and the morphology by SEM images. Antimicrobial studies showed that the biosynthesized ZnONPs have antimicrobial efficacy against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans where inhibition zones at concentration 1000 µg/mL were 21.83 ± 0.76, 13.0 ± 1.1, 14.9 ± 0.85, 24.26 ± 1.1, 17.0 ± 1.0, 20.67 ± 0.57 and 19.0 ± 1.0 mm respectively. Under both dark and sunlight irradiation, the photocatalytic activity of ZnONPs was evaluated towards the degradation of the thiazine dye (methylene blue-MB). Approximately 95% of the MB dye was broken down at pH 8 after 150 min of sunlight exposure. The aforementioned results, therefore, suggest that ZnONPs synthesized by implementing environmentally friendly techniques can be employed for a variety of environmental and biomedical applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Difração de Raios X
3.
Viruses ; 14(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36298706

RESUMO

Potato virus Y (PVY) is one of the most harmful phytopathogens. It causes big problems for potatoes and other important crops around the world. Nanoclays have been extensively studied for various biomedical applications. However, reports on their interactions with phytopathogens, particularly viral infections, are still limited. In this study, the protective activity of Egyptian nanoclay (CE) and standard nanoclay (CS) against PVY was evaluated on potato (Solanum tuberosum L.) plants. Their physicochemical and morphological properties were examined with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and energy dispersive spectrometer (EDS). SEM and TEM analyses revealed that CE has a spherical and hexagonal structure ranging from 20 to 80 nm in size, while CS has boulder-like and tubular structures of about 320 nm in size. FTIR and EDS showed that both nanoclay types have different functional groups and contain many vital plant nutrients that are necessary for every stage and process of the plant, including development, productivity, and metabolism. Under greenhouse conditions, a 1% nanoclay foliar application enhanced potato growth, reduced disease symptoms, and reduced PVY accumulation levels compared with non-treated plants. Significant increases in levels of antioxidant enzymes (PPO and POX) and considerable decreases in oxidative stress markers (MDA and H2O2) were also reported. Moreover, a significant increase in the transcriptional levels of defense-related genes (PAL-1, PR-5, and CHI-2) was observed. All experiment and analysis results indicate that the CE type is more effective than the CS type against PVY infection. Based on these results, the foliar applications of nanoclay could be used to manage plant viral infections in a way that is both effective and environmentally friendly. To our knowledge, this is the first report of the antiviral activity of the foliar application of nanoclay against PVY infection.


Assuntos
Potyvirus , Solanum tuberosum , Potyvirus/genética , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas , Antivirais/metabolismo
4.
Front Plant Sci ; 13: 966929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003819

RESUMO

Extensive use of chemical control agents and fungicides typically leads to numerous risks to human health and the environment. Using plant extracts as natural substances represents a dual key for the environment and sustainable food production, as it reduces the input of synthetic pesticides into the environment and/or controls plant pathogens. For the first time, a Plantago lagopus ethanolic extract has been characterized and evaluated for its protective and curative effects against Rhizoctonia solani in tomato plants. The results showed that P. lagopus extract (10 µg/ml) completely inhibited R. solani mycelial growth in vitro. At 20 days of post fungal inoculation, the results demonstrated that using P. lagopus extract (100 µg/ml) in vivo enhanced tomato plant growth by significantly increasing shoot and root parameters in protective and curative treatments. Furthermore, the protective and curative treatments significantly reduced the disease index by 18.66 and 38.66%, respectively. Induction of systemic resistance with upregulation of PR-1 and PR-2 and a significant increase in the transcriptional levels of PR-3 and CHS in all P. lagopus extract-treated tomato plants were reported compared to untreated plants. HPLC analysis showed that the most common polyphenolic components detected in P. lagopus extract were rutin (74206.3 mg/kg), naringenin (2388.74 mg/kg), quercetin (1249.13 mg/kg), and p-hydroxybenzoic acid (1035.87 mg/kg). In addition, the ellagic acid (798.47 mg/kg), vanillic acid (752.55 mg/kg), catechol (648.89 mg/kg), cinnamic acid (332.51 mg/kg), ferulic acid (296.32 mg/kg), benzoic acid (295.95 mg/kg), and chlorogenic acid (116.63 mg/kg) were also reported. Our study is the first to show that P. lagopus extract can help plants fight off R. solani fungal infection. Furthermore, the findings imply that using the P. lagopus extract as a natural biocontrol agent could be a sustainable strategy to manage plant fungal diseases.

5.
Plants (Basel) ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34834798

RESUMO

The widespread use of chemical control agents and pesticides for plant-pathogen control has caused many human health and environmental issues. Plant extracts and biocontrol agents have robust antimicrobial activity against different plant pathogens. However, their antiviral activities are still being investigated. In the present study, the methanol extract of Paronychia argentea was characterized and evaluated for its protective activity against the tobacco mosaic virus (TMV) infection in tomato plants under greenhouse conditions at 21 days post-inoculation. The results showed that the foliar application of P. argentea extract (10 µg/mL) enhanced tomato plant growth, resulting in significant increases in shoot and root parameters and total chlorophyll contents. Moreover, a significant reduction in TMV accumulation level in P. argentea-treated plants of 77.88% compared to non-treated plants was reported. Furthermore, induction of systemic resistance with significant elevation in production of antioxidant enzymes (PPO, CAT, and SOD) and transcriptional levels of the pathogenesis-related proteins (PR-1 and PR-7) and polyphenolic genes (CHS and HQT) were also observed. Out of 16 detected compounds, HPLC analysis revealed that the most abundant polyphenolic compounds found in P. argentea extract were gallic acid (5.36 µg/mL), kaempferol (7.39 µg/mL), quercetin (7.44 µg/mL), ellagic acid (7.89 µg/mL), myricetin (8.36 µg/mL), and ferulic acid (8.69 µg/mL). The findings suggest that the use of P. argentea extract as an effective and safe source for the production of bioactive compounds may offer a solution for a promising approach for the management of plant viral infections. To the best of our knowledge, this is the first report of the protective activity of P. argentea extract against plant viral diseases.

6.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641623

RESUMO

Grape seed extract (GSE) is a natural source of polyphenolic compounds and secondary metabolites, which have been tested for their possible antimicrobial activities. In the current study, we tested the antibacterial and antifungal activities of aqueous GSE and the biosynthesized silver nanoparticles loaded with GSE (GSE-AgNPs) against different pathogens. The biosynthesized GSE-AgNPs were assessed by UV spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography/mass spectrometry (GC/MS). The antimicrobial activities were assessed against different bacterial and fungal species. DLS analysis showed that GSE-AgNPs had a Z-Average of 91.89 nm while UV spectroscopy showed that GSE-AgNPs had the highest absorbance at a wavelength of ~415 nm. FTIR analysis revealed that both of GSE and GSE-AgNPs consisted of different functional groups, such as hydroxyl, alkenes, alkyne, and aromatic rings. Both FE-SEM and TEM showed that GSE-AgNPs had larger sizes and rough surfaces than GSE and AgNO3. The results showed significant antimicrobial activities of GSE-AgNPs against all tested species, unlike GSE, which had weaker and limited effects. More studies are needed to investigate the other antimicrobial activities of GSE.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Extrato de Sementes de Uva/farmacologia , Prata/química , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Difusão Dinâmica da Luz , Fungos/efeitos dos fármacos , Extrato de Sementes de Uva/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Sci Rep ; 10(1): 16120, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999301

RESUMO

Alfalfa mosaic virus (AMV) is a worldwide distributed virus that has a very wide host range and causes significant crop losses of many economically important crops, including potato (Solanum tuberosum L.). In this study, the antiviral activity of Bacillus licheniformis strain POT1 against AMV on potato plants was evaluated. The dual foliar application of culture filtrate (CF), 24 h before and after AMV-inoculation, was the most effective treatment that showed 86.79% reduction of the viral accumulation level and improvement of different growth parameters. Moreover, HPLC analysis showed that a 20 polyphenolic compound was accumulated with a total amount of 7,218.86 and 1606.49 mg/kg in POT1-treated and non-treated plants, respectively. Additionally, the transcriptional analysis of thirteen genes controlling the phenylpropanoid, chlorogenic acid and flavonoid biosynthetic pathways revealed that most of the studied genes were induced after POT1 treatments. The stronger expression level of F3H, the key enzyme in flavonoid biosynthesis in plants, (588.133-fold) and AN2, anthocyanin 2 transcription factor, (97.005-fold) suggested that the accumulation flavonoid, especially anthocyanin, might play significant roles in plant defense against viral infection. Gas chromatography-mass spectrometry (GC-MS) analysis showed that pyrrolo[1,2-a]pyrazine-1,4-dione is the major compound in CF ethyl acetate extract, that is suggesting it acts as elicitor molecules for induction of systemic acquired resistance in potato plants. To our knowledge, this is the first study of biological control of AMV mediated by PGPR in potato plants.


Assuntos
Vírus do Mosaico da Alfafa/patogenicidade , Bacillus licheniformis/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Polifenóis/metabolismo , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Antocianinas/metabolismo , Ácido Clorogênico/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Transcrição Gênica/genética
8.
Saudi J Biol Sci ; 25(2): 361-366, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29472791

RESUMO

Prevention of food spoilage and food poisoning pathogens is usually achieved by use of chemical preservatives which have negative impacts including: human health hazards of the chemical applications, chemical residues in food & feed chains and acquisition of microbial resistance to the used chemicals. Because of such concerns, the necessity to find a potentially effective, healthy safer and natural alternative preservatives is increased. Within these texts, Plant extracts have been used to control food poisoning diseases and preserve foodstuff. Antimicrobial activity of five plant extracts were investigated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi using agar disc diffusion technique. Ethanolic extracts of Punica granatum, Syzygium aromaticum, Zingiber officinales and Thymus vulgaris were potentially effective with variable efficiency against the tested bacterial strains at concentration of 10 mg/ml while extract of Cuminum cyminum was only effective against S. aureus respectively. P. granatum and S. aromaticum ethanolic extracts were the most effective plant extracts and showed bacteriostatic and bactericidal activities against the highly susceptible strains of food borne pathogenic bacteria (S. aureus and P. aeruginosa) with MIC's ranged from 2.5 to 5.0 mg/ml and MBC of 5.0 and 10 mg/ml except P. aeruginosa which was less sensitive and its MBC reached to 12.5 mg/ml of S. aromaticum respectively. These plant extracts which proved to be potentially effective can be used as natural alternative preventives to control food poisoning diseases and preserve food stuff avoiding healthy hazards of chemically antimicrobial agent applications.

9.
Acta Biol Hung ; 66(4): 436-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26616375

RESUMO

Stem canker and black scurf of potato, caused by Rhizoctonia solani, can be serious diseases causing an economically significant damage. Biocontrol activity of Bacillus subtilis ATCC 11774 against the Rhizoctonia diseases of potato was investigated in this study. Chitinase enzyme was optimally produced by B. subtilis under batch fermentation conditions similar to those of the potato-growing soil. The maximum chitinase was obtained at initial pH 8 and 30 °C. In vitro, the lytic action of the B. subtilis chitinase was detected releasing 355 µg GlcNAc ml⁻¹ from the cell wall extract of R. solani and suggesting the presence of various chitinase enzymes in the bacterial filtrate. In dual culture test, the antagonistic behavior of B. subtilis resulted in the inhibition of the radial growth of R. solani by 48.1% after 4 days. Moreover, the extracted B. subtilis chitinase reduced the growth of R. solani by 42.3% when incorporated with the PDA plates. Under greenhouse conditions, application of a bacterial suspension of B. subtilis at 109 cell mL⁻¹ significantly reduced the disease incidence of stem canker and black scurf to 22.3 and 30%, respectively. In addition, it significantly improved some biochemical parameters, growth and tubers yield. Our findings indicate two points; firstly, B. subtilis possesses a good biocontrol activity against Rhizoctonia diseases of potato, secondly, the harmonization and suitability of the soil conditions to the growth and activity of B. subtilis guaranteed a high controlling capacity against the target pathogen.


Assuntos
Bacillus subtilis/enzimologia , Agentes de Controle Biológico , Quitinases/biossíntese , Doenças das Plantas/prevenção & controle , Rhizoctonia/patogenicidade , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA