Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 69(1): 95-105, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25103912

RESUMO

Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P < 0.0001) and shared less than 20 % of their operational taxonomic units (OTUs). OTU richness was relatively higher in the soils with the higher oil pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42-89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.


Assuntos
Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Acidobacteria/efeitos dos fármacos , Acidobacteria/genética , Acidobacteria/metabolismo , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Actinobacteria/metabolismo , Bacillus/efeitos dos fármacos , Bacillus/genética , Bacillus/metabolismo , Clima Desértico , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA