Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568247

RESUMO

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Assuntos
Interações Ervas-Drogas , Metais Pesados , Metais Pesados/toxicidade , Processamento de Proteína Pós-Traducional , Solo
2.
Toxics ; 11(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37888715

RESUMO

Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.

3.
Life (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362911

RESUMO

Fungal infections caused by Candida species have attracted great interest due to their resistance to commercial antifungal agents. Essential oils from aromatic and medicinal plants have many bioactive compounds that are known for their important biological activities, mainly their antimicrobial effects. In the present study, we aimed to evaluate the antifungal ability of Elettaria cardamomum essential oil (EO) against different clinical Candida isolates. Then, we investigated the anti-phospholipase, anti-protease, and anti-biofilm activity of E. cardamomum EO against the selected isolates. Twenty-four Candida strains (clinical and reference) were tested for virulence factors such as biofilm formation, protease, and phospholipase activity. The minimum inhibitory (MIC) and fungicidal (MFC) concentrations of E. cardamomum were determined, and their effects were tested against all Candida strains. Our results revealed that E. cardamomum EO was rich in α-terpinyl acetate (56.5%), limonene (12.6%), and mentha-2.4(8)-diene (7.65%). The tested EO showed activity against all tested Candida strains in their planktonic form and against exoenzymes and biofilm production. Based on our findings, we promote the use of E. cardamomum EO as a treatment against clinical Candida isolates active on the virulence factors of this fungus.

4.
Life (Basel) ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295051

RESUMO

Essential oils from aromatic and medicinal plants have many bioactive compounds known for their important biological activities mainly their antibacterial effects. Here we evaluated qualitatively and quantitatively the biofilm formation capability of pathogenic bacterial strains (n = 8). Then, we investigated the antibacterial, antibiofilm, antiquorum-sensing, and antiswarming efficacy of Origanum vulgare essential oil (EO) and terpinene-4-ol. Our results revealed that EO exhibited a more potent inhibitory effect against the tested strains. While the terpinene-4-ol was found to be more effective against developed Staphylococcus aureus biofilm. Regarding the anti quorum-sensing activity, we noticed that O. vulgare displayed better inhibition percentages in violacein production even at a low concentration (MIC/4). Additionally, this EO showed better inhibition of Pseudomonas aeruginosa PAO1 migration in comparison with the terpinene-4-ol. Our findings revealed that using pure O. vulgare EO demonstrated better competitive effects against pathogenic bacteria with a different mode of action when compared to the terpinene-4-ol. Hence, exploration and development of efficient anti-infection agents from natural resources such as full EOs represent promising tools in anti-infective therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA