Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Biochem ; 46(5): e14062, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043973

RESUMO

Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.


Assuntos
Antivirais , Moringa oleifera , Extratos Vegetais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Ésteres/farmacologia , Ácidos Graxos/farmacologia , Frutas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Moringa oleifera/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia , Tratamento Farmacológico da COVID-19
2.
Saudi J Biol Sci ; 29(4): 2432-2446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34924801

RESUMO

In view of the potential of traditional plant-based remedies (or phytomedicines) in the management of COVID-19, the present investigation was aimed at finding novel anti-SARS-CoV-2 molecules by in silico screening of bioactive phytochemicals (database) using computational methods and drug repurposing approach. A total of 160 compounds belonging to various phytochemical classes (flavonoids, limonoids, saponins, triterpenoids, steroids etc.) were selected (as initial hits) and screened against three specific therapeutic targets (Mpro/3CLpro, PLpro and RdRp) of SARS-CoV-2 by docking, molecular dynamics simulation and drug-likeness/ADMET studies. From our studies, six phytochemicals were identified as notable ant-SARS-CoV-2 agents (best hit molecules) with promising inhibitory effects effective against protease (Mpro and PLpro) and polymerase (RdRp) enzymes. These compounds are namely, ginsenoside Rg2, saikosaponin A, somniferine, betulinic acid, soyasapogenol C and azadirachtin A. On the basis of binding modes and dynamics studies of protein-ligand intercations, ginsenoside Rg2, saikosaponin A, somniferine were found to be the most potent (in silico) inhibitors potentially active against Mpro, PLpro and RdRp, respectively. The present investigation can be directed towards further experimental studies in order to confirm the anti-SARS-CoV-2 efficacy along with toxicities of identified phytomolecules.

3.
Biomed Pharmacother ; 143: 112156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649333

RESUMO

Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.


Assuntos
Apoptose/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phyllanthus emblica , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Frutas , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Phyllanthus emblica/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Tripanossomicidas/isolamento & purificação
4.
ACS Omega ; 6(12): 8548-8560, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817515

RESUMO

Acacia nilotica (A. nilotica) is an important medicinal plant, found in Africa, the Middle East, and the Indian subcontinent. Every part of the plant possesses a wide array of biologically active and therapeutically important compounds. We reported the antileishmanial activity of A. nilotica bark methanolic extract through in vitro antileishmanial assays and dissected the mechanism of its action through in silico studies. Bark methanolic extract exhibited antipromastigote and antiamastigote potential in a time and dose-dependent manner with IC50 values of 19.6 ± 0.9037 and 77.52 ± 5.167 µg/mL, respectively. It showed cytotoxicity on THP-1-derived human macrophages at very high dose with a CC50 value of 432.7 ± 7.71 µg/mL. The major constituents identified by gas chromatography-mass spectrometry (GC-MS) analysis, 13-docosenoic acid, lupeol, 9,12-octadecadienoic acid, and 6-octadecanoic acid, showed effective binding with the potential drug targets of Leishmania donovani (L. donovani) including sterol 24-c-methyltransferase, trypanothione reductase, pteridine reductase, and adenine phosphoribosyltransferase, suggesting the possible mechanism of its antileishmanial action. Pharmacokinetic studies on major phytoconstituents analyzed by GC-MS supported their use as safe antileishmanial drug candidates. This study proved the antileishmanial potential of bark methanolic extract A. nilotica and its mechanism of action through the inhibition of potential drug targets of L. donovani.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA