Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Breed ; 41(5): 36, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37309330

RESUMO

As a staple food for more than half of the world's population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to their unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on floury endosperm in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential floury genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performances of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01226-z.

2.
Plant Physiol Biochem ; 153: 20-29, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464490

RESUMO

Soil phosphorus (P) occurs in pools of lower availability due to soil P fixation and therefore, it is a key constrain to crop production. Long term molybdenum-induced effects in wheat and rhizosphere/non-rhizosphere soil P dynamics have not yet been investigated. Here, a long term field experiment was conducted to explore these effects in wheat consisting of two treatments i.e. with molybdenum (+Mo) and without molybdenum (-Mo). The results revealed that molybdenum (Mo) supply increased plant biomass, grain yield, P uptake, preserved the configuration of chloroplast, stomata, and mesophyll tissue cells, suggesting the complementary effects of Mo on wheat yield and P accumulation. During the periods of vegetative growth, soil organic carbon, organic matter, and microbial biomass P were higher and tended to decrease in rhizosphere soil at maturity stage. In +Mo treatment, the most available P fractions [H2O-Pi (16.2-22.9 mg/kg and 4.24-7.57 mg/kg) and NaHCO3-Pi (130-149 mg/kg and 77.2-88 mg/kg)] were significantly increased in rhizosphere and non-rhizosphere soils, respectively. In addition, the +Mo treatment significantly increased the acid phosphatase activity and the expression of phoN/phoC, aphA, olpA/lppC gene transcripts in rhizosphere soil compared to -Mo. Our research findings suggested that Mo application has increased P availability not only through biochemical and chemical changes in rhizosphere but also through P assimilation and induced effects in the leaf ultra-structures. So, it might be a strategy of long term Mo fertilizer supply to overcome the P scarcity in plants and rhizosphere soil.


Assuntos
Molibdênio/farmacologia , Fósforo/metabolismo , Folhas de Planta/ultraestrutura , Rizosfera , Triticum/efeitos dos fármacos , Carbono , Solo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA