Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(5): 2387-2395, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35066676

RESUMO

The combination of multiple therapeutic and diagnostic functions is fast becoming a key feature in the area of clinical oncology. The advent of nanotechnology promises multifunctional nanoplatforms with the potential to deliver multiple therapeutics while providing diagnostic information simultaneously. In this study, novel iron oxide-gold core-shell hybrid nanocomposites (Fe3O4@Au HNCs) coated with alginate hydrogel carrying doxorubicin (DOX) were constructed for targeted photo-chemotherapy and magnetic resonance imaging (MRI). The magnetic core enables the HNCs to be detected through MRI and targeted towards the tumor using an external magnetic field, a method known as magnetic drug targeting (MDT). The Au shell could respond to light in the near-infrared (NIR) region, generating a localized heating for photothermal therapy (PTT) of the tumor. The cytotoxicity assay showed that the treatment of CT26 colon cancer cells with the DOX-loaded HNCs followed by laser irradiation induced a significantly higher cell death as opposed to PTT and chemotherapy alone. The in vivo MRI study proved MDT to be an effective strategy for targeting the HNCs to the tumor, thereby enhancing their intratumoral concentration. The antitumor study revealed that the HNCs can successfully combine chemotherapy and PTT, resulting in superior therapeutic outcome. Moreover, the use of MDT following the injection of HNCs caused a more extensive tumor shrinkage as compared to non-targeted group. Therefore, the as-prepared HNCs could be a promising nanoplatform for image-guided targeted combination therapy of cancer.


Assuntos
Nanocompostos , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina , Ouro/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Neoplasias/terapia , Fototerapia
2.
ACS Appl Bio Mater ; 4(5): 4280-4291, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006840

RESUMO

The integration of multiple therapeutic and diagnostic functions into a single nanoplatform for image-guided cancer therapy has been an emerging trend in nanomedicine. We show here that multifunctional theranostic nanostructures consisting of superparamagnetic iron oxide (SPIO) and gold nanoparticles (AuNPs) scaffolded within graphene oxide nanoflakes (GO-SPIO-Au NFs) can be used for dual photo/radiotherapy by virtue of the near-infrared (NIR) absorbance of GO for photothermal therapy (PTT) and the Z element radiosensitization of AuNPs for enhanced radiation therapy (RT). At the same time, this nanoplatform can also be detected by magnetic resonance (MR) imaging because of the presence of SPIO NPs. Using a mouse carcinoma model, GO-SPIO-Au NF-mediated combined PTT/RT exhibited a 1.85-fold and 1.44-fold higher therapeutic efficacy compared to either NF-mediated PTT or RT alone, respectively, resulting in a complete eradication of tumors. As a sensitive multifunctional theranostic platform, GO-SPIO-Au NFs appear to be a promising nanomaterial for enhanced cancer imaging and therapy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carcinoma/tratamento farmacológico , Imageamento por Ressonância Magnética , Fototerapia , Radiossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacologia , Grafite/química , Grafite/farmacologia , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Tamanho da Partícula , Radiossensibilizantes/síntese química , Radiossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
3.
Photodiagnosis Photodyn Ther ; 32: 102061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33068822

RESUMO

Maximal synergistic effect between photothermal therapy and radiotherapy (RT) may be achieved when the interval between these two modalities is optimal. In this study, we tried to determine the optimal schedule of the combined regime of RT and nano-photothermal therapy (NPTT), based on the cell cycle distribution and kinetics of cell death. To this end, alginate-coated iron oxide-gold core-shell nanoparticles (Fe3O4@Au/Alg NPs) were synthesized, characterized, and their photo-radio sensitization potency was evaluated on human nasopharyngeal cancer KB cells. Our results demonstrated that synthesized NPs have a good potential in radiotherapy and near-infrared (NIR) photothermal therapy. However, results from flow cytometry analysis indicated that a major portion of KB cells were accumulated in the most radiosensitive phases of cell cycle (G2/M) 24 h after NPTT. Moreover, the maximal synergistic anticancer efficacy (12.3% cell viability) was observed when RT was applied 24 h following the administration of NPTT (NPs [30 µg/mL, 4 h incubation time] + Laser [808 nm, 1 W/cm2, 5 min] + RT [6 Gy]). It is noteworthy that apoptosis was the dominant cell death pathway in the group of cells treated by combination of NPTT and RT. This highly synergistic anticancer efficacy provides a mechanistic basis for Fe3O4@Au/Alg NPs-mediated photothermal therapy combined with RT. Knowing such a basis is helpful to promote novel nanotechnology cancer treatment strategies.


Assuntos
Nanopartículas , Neoplasias Nasofaríngeas , Fotoquimioterapia , Linhagem Celular Tumoral , Ouro , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Fototerapia
4.
Eur J Pharm Sci ; 145: 105235, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31991226

RESUMO

Multimodal cancer therapy has become a new trend in clinical oncology due to potential generation of synergistic therapeutic effects. Herein, we propose a multifunctional nanoplatform comprising alginate hydrogel co-loaded with cisplatin and gold nanoparticles (abbreviated as ACA) for triple combination of photothermal therapy, chemotherapy and radiotherapy (thermo-chemo-radio therapy). The therapeutic potential of ACA was assessed in combination with 532 nm laser and 6 MV X-ray against KB human mouth epidermal carcinoma cells. The results demonstrated that tri-modal thermo-chemo-radio therapy using ACA induced a superior anticancer efficacy than mono- or bi-modality treatments. The intracellular reactive oxygen species (ROS) level in KB cells treated with tri-modal therapy was increased by 4.4-fold compared to untreated cells. The gene expression analysis demonstrated the up-regulation of Bax pro-apoptotic factor (by 4.5-fold) and the down-regulation of Bcl-2 anti-apoptotic factor (by 0.3-fold). The massive cell injury and the appearance of morphological characteristics of apoptosis were also evident in the micrograph of KB cells caused by thermo-chemo-radio therapy. Therefore, ACA nanocomplex can be offered as a promising platform to combine photothermal therapy, chemotherapy and radiotherapy, thereby affording an opportunity for combating chemo- and radio-resistant tumors.


Assuntos
Antineoplásicos/administração & dosagem , Quimiorradioterapia Adjuvante/métodos , Sistemas de Liberação de Medicamentos/métodos , Ouro/administração & dosagem , Hipertermia Induzida/métodos , Nanopartículas Metálicas/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Terapia Combinada/métodos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Neoplasias/terapia
5.
J Photochem Photobiol B ; 192: 19-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30665146

RESUMO

The current chemotherapy method demonstrates the need for improvement in terms of efficacy and safety. Given the beneficiary effect of heat in combination with chemotherapy, the purpose of this study is to develop a multifunctional nanoplatform by co-incorporating gold nanoparticles (AuNPs) as photothermal agent and cisplatin as anticancer drug into alginate hydrogel (named as ACA) to enable concurrent thermo-chemotherapy. The in vitro cytotoxicity experiment showed that the as-developed nanocomplex was able to induce greater cytotoxicity in KB human nasopharyngeal cancer cells compared to free cisplatin at the same concentration. Moreover, the interaction of ACA and laser irradiation acted synergistically and resulted in higher cell death rate compared to separate application of photothermal therapy and chemotherapy. The micrograph of KB cells also revealed that ACA was able to selectively accumulate into the mitochondria, so that laser irradiation of KB cells pre-treated with ACA resulted in intensive morphological damages such as plasma membrane disruption, chromatin condensation, autophagic vacuoles formation and organelle degeneration. Moreover, the sign and magnitude of optical nonlinear refractive index measured by Z-scan technique was shown to be significantly altered in cells exposed to ACA with and without laser irradiation. Consequently, the nanocomplex developed herein could be a promising platform to combine photothermal therapy and chemotherapy effectively, thereby achieving synergistic therapeutic outcome.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Fototerapia/métodos , Alginatos , Antineoplásicos , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Cisplatino , Terapia Combinada/métodos , Ouro , Humanos , Terapia a Laser , Nanopartículas Metálicas , Neoplasias/patologia , Neoplasias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA