Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Metab Brain Dis ; 38(2): 483-505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35344129

RESUMO

Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.


Assuntos
Catequina , Mangifera , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/química , Mangifera/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Catequina/análise , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Sementes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
Metab Brain Dis ; 38(3): 1051-1066, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437394

RESUMO

Parkinson's disease (PD) is slowly developing neurodegenerative disorder associated with gradual decline in cerebration and laboriousness to perform routine piece of work. PD imposed a social burden on society through higher medical cost and by loss of social productivity in current era. The available treatment options are expensive and associated with serious adverse effect after long term use. Therefore, there is a critical clinical need to develop alternative pharmacotherapies from natural sources to prevent and cure the pathological hall marks of PD with minimal cost. Our study aimed to scrutinize the antiparkinsonian potential of curcuminoids-rich extract and its binary and ternary inclusion complexes. In healthy rats, 1 mg/kg haloperidol daily intraperitoneally, for 3 weeks was used to provoke Parkinsonism like symptoms except control group. Curcuminoids rich extract, binary and ternary inclusion complexes formulations 15-30 mg/kg, L-dopa and carbidopa (100 + 25 mg/kg) were orally administered on each day for 3 weeks. Biochemical, histopathological and RT-qPCR analyses were conducted after neurobehavioral observations. Findings of current study indicated that all curcuminoids formulations markedly mitigated the behavioral abnormalities, recovered the level of antioxidant enzymes, acetylcholinesterase inhibitory activity and neurotransmitters. Histological analysis revealed that curcuminoids supplements stabilized the neuronal loss, pigmentation and Lewy bodies' formation. The mRNA expressions of neuro-inflammatory and specific PD pathological biomarkers were downregulated by treatment with curcuminoids formulations. Therefore, it is suggested that these curcuminoids rich extract, binary and ternary supplements should be considered as promising therapeutic agents in development of modern anti-Parkinson's disease medications.


Assuntos
Diarileptanoides , Doença de Parkinson , Ratos , Animais , Diarileptanoides/uso terapêutico , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Acetilcolinesterase , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico
3.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290588

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with unmet medical need. This investigation consisted of testing a range of ethanolic ethnomedicinal plant extracts (n = 18) traditionally used in the treatment of disorders such as anxiety, delirium, and memory loss. They were then screened for in vitro inhibitory activity against acetylcholinesterase (AChE), butylcholinesterase (BuChE), beta-secretase 1/beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), and antioxidant activities. Plants with potent activities were further characterised using a recently developed in vivo model of AD, Globodera pallida. The ability of phytoextracts to protect this organism against amyloid-beta Aß (1-42) exposure was assessed by measuring chemosensing, survival rate, production of reactive oxygen species (ROS), and antioxidant responses. Extracts (n = 5) from Juglans regia (leaves), Ellettaria cardamomum (seeds), Cinnamomum zeylanicum (bark), Salvia officinalis (leaves/flowers), and Hypericum perforatum (flowers) exerted concentration-dependent inhibitory activities against AChE and BuChE. Three of these plant extracts (i.e., J. regia, E. cardamomum, and S. officinalis) possessed strong concentration-dependent inhibitory activity against BACE1. Furthermore, the five selected medicinal plant extracts not only enhanced significantly (p < 0.05) the nematode's chemosensing, survival rate, and antioxidant responses (i.e., anti-ROS production, mitochondrial reductase activity, oxidized glutathione (GSSG) to reduced glutathione (GSH) ratio), but also greatly restored (p < 0.05) in a concentration-dependent manner the Aß (1-42)-induced deleterious changes in these same parameters. In brief, this investigation highlights plant extracts with strong anti-AD activities which could be trialled as novel therapeutic supplements or undergo further biodiscovery research.

4.
Mar Drugs ; 19(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564146

RESUMO

Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.


Assuntos
Produtos Biológicos/metabolismo , Clorófitas/metabolismo , Phaeophyceae/metabolismo , Rodófitas/metabolismo , Alga Marinha/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Humanos , Nanomedicina
5.
Biomed Pharmacother ; 143: 112151, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507115

RESUMO

Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-ß gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.


Assuntos
Indutores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glycyrrhiza , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Indutores da Angiogênese/isolamento & purificação , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glycyrrhiza/química , Mediadores da Inflamação/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
6.
Saudi J Biol Sci ; 28(9): 5391-5402, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466120

RESUMO

BACKGROUND: However, broad adoption of herbal remedies for giardiasis is at present hampered by uncertain findings of investigation not always sufficiently powered. This study was aimed at systematically reviewing the existing literature in herbal medicines to treat giardiasis. METHODS: This review was carried out 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. The search was performed in five databases which are Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for all published articles (in vitro, in vivo, and clinical studies). The searched words and terms were: "Giardia", "giardiasis", "extract", "essential oil", "herbal medicines", "anti-Giardia", "In vitro", "In vivo", "clinical trial" etc. RESULTS: Out of 1585 papers, 40 papers including 28 in vitro (70.0%), 7 in vivo (17.5%), 2 in vitro/ in vivo (5.0%), and 3 clinical trials (7.5%) up to 2020, met the inclusion criteria for discussion in this systematic review. The most widely used medicinal plants against Giardia infection belong to the family Lamiaceae (30.0%) followed by Asteraceae (13.5%), Apiaceae (10.5%). The most common parts used in the studies were aerial parts (45.0%) followed by leaves (27.4%) and seeds (7.5%). The aqueous extract (30.0%), essential oil (25.4%) and hydroalcholic and methanolic (10.5%) were considered as the desired approaches of herbal extraction, respectively. CONCLUSION: The current review showed that the plant-based anti-Giardia agents are very promising as an alternative and complementary resource for treating giardiasis since had low significant toxicity. However, more studies are required to elucidate this conclusion, especially in clinical systems.

7.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807273

RESUMO

BACKGROUND: In recent years, the focus on nanotechnological methods in medicine, especially in the treatment of microbial infections, has increased rapidly. AIM: The present study aims to evaluate in vitro and in vivo antileishmanial effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit extract alone and combined with meglumine antimoniate (MA). METHODS: CuNPs were green synthesized by C. spinosa methanolic extract. The in vitro antileishmanial activity of CuNPs (10-200 µg/mL) or MA alone (10-200 µg/mL), and various concentrations of MA (10-200 µg/mL) along with 20 µg/mL of CuNPs, was assessed against the Leishmania major (MRHO/IR/75/ER) amastigote forms and, then tested on cutaneous leishmaniasis induced in male BALB/c mice by L. major. Moreover, infectivity rate, nitric oxide (NO) production, and cytotoxic effects of CuNPs on J774-A1 cells were evaluated. RESULTS: Scanning electron microscopy showed that the particle size of CuNPs was 17 to 41 nm. The results demonstrated that CuNPs, especially combined with MA, significantly (p < 0.001) inhibited the growth rate of L. major amastigotes and triggered the production of NO (p < 0.05) in a dose-dependent manner. CuNPs also had no significant cytotoxicity in J774 cells. The mean number of parasites was significantly (p < 0.05) reduced in the infected mice treated with CuNPs, especially combined with MA in a dose-dependent response. The mean diameter of the lesions decreased by 43 and 58 mm after the treatment with concentrations of 100 and 200 mg/mL of CuNPs, respectively. CONCLUSION: The findings of the present study demonstrated the high potency and synergistic effect of CuNPs alone and combined with MA in inhibiting the growth of amastigote forms of L. major, as well as recovery and improving cutaneous leishmaniasis (CL) induced by L. major in BALB/c mice. Additionally, supplementary studies, especially in clinical settings, are required.

8.
Acta Parasitol ; 66(3): 797-811, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33770343

RESUMO

BACKGROUND: In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS: The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS: Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION: In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.


Assuntos
Antiprotozoários , Curcumina , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Curcumina/farmacologia , Humanos , Leishmaniose Cutânea/tratamento farmacológico
9.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348662

RESUMO

Since there is no potential, effective vaccine available, treatment is the only controlling option against hydatid cyst or cystic echinococcosis (CE). This study was designed to systematically review the in vitro, in vivo, and ex vivo effects of nanoparticles against hydatid cyst. The study was carried out based on the 06- PRISMA guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar without time limitation for publications around the world about the protoscolicdal effects of all the organic and inorganic nanoparticles without date limitation in order to identify all the published articles (in vitro, in vivo, and ex vivo). The searched words and terms were: "nanoparticles", "hydatid cyst", "protoscoleces", "cystic echinococcosis", "metal nanoparticles", "organic nanoparticles", "inorganic nanoparticles, "in vitro", ex vivo", "in vivo". Out of 925 papers, 29 papers including 15 in vitro (51.7%), 6 in vivo (20.7%), ex vivo 2 (6.9%), and 6 in vitro/in vivo (20.7%) up to 2020 met the inclusion criteria for discussion in this systematic review. The results demonstrated the most widely used nanoparticles in the studies were metal nanoparticles such as selenium, silver, gold, zinc, copper, iron nanoparticles (n = 8, 28.6%), and metal oxide nanoparticles such as zinc oxide, titanium dioxide, cerium oxide, zirconium dioxide, and silicon dioxide (n = 8, 28.6%), followed by polymeric nanoparticles such as chitosan and chitosan-based nanoparticles (n = 7, 25.0%). The results of this review showed the high efficacy of a wide range of organic and inorganic NPs against CE, indicating that nanoparticles could be considered as an alternative and complementary resource for CE treatment. The results demonstrated that the most widely used nanoparticles for hydatid cyst treatment were metal nanoparticles and metal oxide nanoparticles, followed by polymeric nanoparticles. We found that the most compatible drugs with nanoparticles were albendazole, followed by praziquantel and flubendazole, indicating a deeper understanding about the synergistic effects of nanoparticles and the present anti-parasitic drugs for treating hydatid cysts. The important point about using these nanoparticles is their toxicity; therefore, cytotoxicity as well as acute and chronic toxicities of these nanoparticles should be considered in particular. As a limitation, in the present study, although most of the studies have been performed in vitro, more studies are needed to confirm the effect of these nanoparticles as well as their exact mechanisms in the hydatid cyst treatment, especially in animal models and clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA