Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Environ Res ; 231(Pt 1): 115941, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100366

RESUMO

Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 µg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cobre/toxicidade , Cobre/química , Extratos Vegetais/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química
2.
Chemosphere ; 307(Pt 4): 136003, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987265

RESUMO

Herein, a simple hydrothermal approach was used to make multiplex heteroatoms doped carbon dots from Tinospora cordifolia miers plant extract. Their ability to the catalytic activity of dyes and anti-spurious applications was evaluated. The formation of NBCNDs and source of (T. cordifolia miers) study the optical properties, and functional groups are investigated using UV-Visible spectroscopy and FT-IR techniques. The synthesized NBCNDs structure and elemental compositions were examined via HR-TEM, XRD, and XPS, respectively. According to the HRTEM images, the average particle size of the NBCNDs was around 4.3± 1 nm, with d-spacing of 0.19 nm. The obtained NBCNDs were exposed under 395 nm UV light to emit bluish-green tuneable fluorescence with QY (quantum yield) of 23.7%. The prepared NBCNDs as a potential catalyst for the AYR and CV dye reduction process using freshly prepared NaBH4, with determined rate constant values at 0.1220 and 0.1521 min-1, respectively. Lastly, we constructed a quick response (QR) code security label for anti-spurious applications using stencil techniques. The "confidential info" was encrypted using a QR code digital system, and the decryption was read using a smartphone under 365 nm light irradiation.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Íons , Nitrogênio/química , Extratos Vegetais/química , Pontos Quânticos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Res ; 211: 113046, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35300965

RESUMO

The present study focused to synthesize the copper oxide nanoparticles (CuONPs) using novel Canthium coromandelicum leaves in a cost-effective, easy, and sustainable approach. The obtained Canthium coromandelicum-copper oxide nanoparticles (CC-CuONPs) were characterized using UV-Visible spectroscopy, FT-IR analysis, FESEM, HR-TEM imaging, and XRD study. The XRD pattern verified the development of crystalline CC-CuONPs with an average size of 33 nm. The biosynthesized CC-CuONPs were roughly spherical, according to HR-TEM and FESEM analyses. FT-IR research verified the existence of functional groups involved in CC-CuONPs production. Cu and O2 have high-energy signals of 78.32% and 12.78%, respectively, according to data from EDX. The photocatalytic evaluation showed that synthesized CC-CuONPs have the efficiency of degrading methylene blue (MB) and methyl orange (MO) by 91.32%, 89.35% respectively. The findings showed that biosynthesized CC-CuONPs might effectively remove contaminants in an environmentally acceptable manner.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Corantes , Cobre/química , Química Verde/métodos , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos , Extratos Vegetais , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis
4.
Environ Res ; 211: 113011, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35288154

RESUMO

The intensive discharge of slaughterhouse waste into water bodies increases Nitrogen (N), Phosphorus (P) in the wastewater and leads to various environmental problems. On the other hand, the increasing treatment effort after the extraction of these valuable nutrients in the commercial fertilizer reduces the dependence on scarce phosphate resources. The viable solution is to recover N, P as struvite (magnesium ammonium phosphate) from nutrient rich waste water as a small scale treatment unit application. The main parameters that have a significant impact on the process, including pH, Mg: P ratio, and precipitation time, were investigated from slaughterhouse wastewater using a central composite design and the experimental data's were statistically analysed. The results indicated that pH and Mg/P ratio level had a significant impact and thus 85% struvite precipitation efficiency was achieved at 9.6 pH and 1.5 dose mol ratio (mol Mg per mol P), in an inexpensive, stirred tank batch reactor with a retention time of 70 min. The fertilization efficiency was tested on the growth of Solanum melongena L with the obtained struvite and the integration of struvite with the Azospirullum rhizobium and Bacillus megaterium. Treatment of struvite, struvite with Azospirillum rhizobium and Bacillus megaterium increased growth parameters by 10%, 20%, and 25%, respectively, over control. The assessment of growth factors showed the most amazing number of fruits, shoots, and root length in a standard ratio of 60:40 of struvite to bio-inoculants compared to sole struvite fertilizer. Findings of this study would be beneficial to determine the feasibility of slaughterhouse waste as a phosphorus source for struvite recovery.


Assuntos
Matadouros , Águas Residuárias , Fertilização , Fertilizantes , Compostos de Magnésio , Fosfatos/análise , Fósforo/análise , Estruvita , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise
5.
Environ Sci Pollut Res Int ; 29(31): 47539-47548, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182347

RESUMO

The utilization of novel compounds as cancer treatments offers enormous potential in this field. The advantages of nanomedicine-based therapy include efficient cellular uptake and selective cell targeting. In this study, we employ selenium nanoparticles' green-synthesized by apigenin (SeNPs-apigenin) to treat breast cancer. We used various assays to show that SeNPs-apigenin can reduce MCF-7 cell viability and trigger apoptosis in vitro. Flow cytometry and PCR methods were used to detect apoptosis, while cell migration and invasion methods were used to quantify the possible effect of SeNPs-apigenin therapy on cell migration and invasion. According to cytotoxicity testing, the SeNPs-apigenin treatment can successfully limit MCF-7 cell proliferation and viability in a concentration-dependent manner. Flow cytometric and PCR analyses revealed that SeNPs-apigenin treatment induced apoptosis in MCF-7 cells, demonstrating that SeNPs-apigenin treatment could directly target Bcl-2, Bax, and caspase-3 and result in the discharge of cytochrome C from mitochondria into the cytosol, accompanied by the initiation of cell death, leading to permanent DNA damage and killing of MCF-7 cells. Furthermore, treatment with SeNPs-apigenin increased reactive oxygen species production and oxidative stress in MCF-7 cells. Our findings indicate that SeNPs-apigenin has cytotoxic potential in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Selênio , Apigenina/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Selênio/farmacologia
6.
Chemosphere ; 287(Pt 4): 132406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597649

RESUMO

Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.


Assuntos
Arsênio , Helianthus , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Fósforo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
7.
Comb Chem High Throughput Screen ; 25(1): 103-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33280592

RESUMO

BACKGROUND: Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. AIMS: We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. METHODS: Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. RESULTS: Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. CONCLUSION: Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.


Assuntos
Cloreto de Mercúrio , Ziziphus , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacologia , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ziziphus/metabolismo
8.
Molecules ; 26(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946791

RESUMO

In the present study, mace-mediated silver nanoparticles (mace-AgNPs) were synthesized, characterized, and evaluated against an array of pathogenic microorganisms. Mace, the arils of Myristica fragrans, are a rich source of several bioactive compounds, including polyphenols and aromatic compounds. During nano synthesis, the bioactive compounds in mace aqueous extracts serve as excellent bio reductants, stabilizers, and capping agents. The UV-VIS spectroscopy of the synthesized NPs showed an intense and broad SPR absorption peak at 456 nm. Dynamic light scattering (DLS) analysis showed the size with a Z average of 50 nm, while transmission electron microscopy (TEM) studies depicted the round shape and small size of the NPs, which ranged between 5-28 nm. The peaks related to important functional groups, such as phenols, alcohols, carbonyl groups, amides, alkanes and alkenes, were obtained on a Fourier-transform infrared spectroscopy (FTIR) spectrum. The peak at 3 keV on the energy dispersive X-ray spectrum (EDX) validated the presence of silver (Ag). Mace-silver nanoparticles exhibited potent antifungal and antibacterial activity against several pathogenic microorganisms. Additionally, the synthesized mace-AgNPs displayed an excellent cytotoxic effect against the human cervical cancer cell line. The mace-AgNPs demonstrated robust antibacterial, antifungal, and cytotoxic activity, indicating that the mace-AgNPs might be used in the agrochemical industry, pharmaceutical industry, and biomedical applications. However, future studies to understand its mode of action are needed.


Assuntos
Antibacterianos , Antifúngicos , Nanopartículas Metálicas , Myristica/química , Extratos Vegetais/química , Prata , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Bactérias/crescimento & desenvolvimento , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Fungos/crescimento & desenvolvimento , Células HeLa , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia
9.
Asian Pac J Cancer Prev ; 22(9): 2959-2967, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582668

RESUMO

Marjoram plants have varied pharmacological properties because they contain antioxidants. In the present study, to evaluate the effect of Origanum majorana, gathered from Abha, Saudi Arabia, on the growth of human breast cancer cells using MCF7. Fresh aerial parts from Origanum majorana were extracted at a low temperature (0 ℃/6 hours). Human MCF7 breast cancer cells were then treated with 4 separate fluctuated concentrations of 0, 50, 150, 200 and 350 µg/mL for 24 and 48 hours. The findings showed that Origanum majorana aqueous extract contained absolute phenolic content (TPC) was 58.24 mg equivalent/g DW, and the complete flavonoid content (TFC) 35.31 mg GAE equivalent/g DW in the Origanum majorana aqueous extract. The endurance of MCF7 cells after incubation with aqueous extract diminished, indicating that Origanum majorana is tumour cell selective. Origanum majorana extract increased the mRNA Expression of Apoptotic Genes in MCF7. Majorana aqueous extract expanded the activity of Caspase-7 action specifically at higher concentrations, 150, 200, and 350 µg/ml. Our findings indicate that Origanum majorana could induce apoptosis of human breast cancer cells. This is the first study that provides a basis for the use of aqueous Origanum majorana extracted at low temperature (0 °C/6 hours) as more effective anticancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Temperatura Baixa , Dinâmica Mitocondrial/efeitos dos fármacos , Origanum , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Fitoterapia , Arábia Saudita
10.
BMC Complement Med Ther ; 21(1): 133, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926427

RESUMO

BACKGROUND: Cardamom (Elettaria cardamomum) is a spice and exhibits potent antioxidant and biological activities through distinct molecular mechanisms. However, the anticancer effect of cardamom was not explored yet in Ehrlich solid tumor (EST)-bearing mice. OBJECTIVES: This investigation was aimed to evaluate the anti-cancer effects of green cardamom (GCar) alone or combined with the anti-cancer drug cyclophosphamide in an in vivo model to explore its mechanistic role in tumor cell death in EST-bearing mice. METHODS: Ehrlich ascites tumor cells were injected in the mice and 5 days later the animals treated with GCar and/or cyclophosphamide for 10 days. Twenty-four hours from the last treatment, animals were sacrificed for the different measurements. RESULTS: Data recorded for tumor size, percentage of tumor growth inhibition, tumor growth delay and mean survival time of EST-bearing mice demonstrated the effective role of GCar alone or combined with CPO as a promising anti-cancer agent because it reduced tumor size. GCar elevated the mean survival time of EST-bearing mice compared to that of untreated EST and EST + CPO groups. Analysis of qPCR mRNA gene and protein expression revealed that GCar alone or combined with CPO were promising anticancer agents. After the treatment of EST with GCar, the apoptotic-related genes and proteins were significantly modulated. GCar induced markedly significant decreases in oxidative stress biomarkers and a significant increment in glutathione levels and that of antioxidant enzymes. With a marked diminish in liver and kidney function biomarkers. CONCLUSION: The results revealed that GCar could serve as an apoptotic stimulator agent, presenting a novel and potentially curative approach for cancer treatment, inducing fewer side effects than those of the commercially used anti-cancer drugs, such as CPO.


Assuntos
Antineoplásicos , Carcinoma de Ehrlich , Ciclofosfamida , Elettaria , Extratos Vegetais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Carcinoma de Ehrlich/química , Carcinoma de Ehrlich/patologia , Ciclofosfamida/farmacologia , Ciclofosfamida/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/química , Neoplasias Experimentais/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Sementes/química
11.
Environ Sci Pollut Res Int ; 28(14): 17482-17494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394435

RESUMO

Heavy metal contamination including mercury (Hg) has become one of the most serious environmental problems facing humans and other living organisms. Here, the hepatoprotective effects of Z. spina-christi leaf extract (ZCE) against inorganic mercury salt (mercuric chloride; HgCl2)-induced hepatotoxicity model was investigated in rats. Mercury concentration, liver function markers, oxidative stress markers, inflammation, cell death indicators, and histopathology were assessed. ZCE protected against HgCl2-induced hepatotoxicity, decreased Hg concentration, lipid peroxidation, and nitric oxide, increased glutathione, superoxide dismutase, catalase, and glutathione recycling enzymes (peroxidase and reductase), and upregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expression in HgCl2-intoxicated rat hepatic tissue. Nrf2 downstream gene and heme oxygenase-1 were also upregulated, confirming that hepatoprotection by ZCE against HgCl2-induced liver damage involved activation of the Nrf2/antioxidant response element pathway. ZCE also decreased the expression and production of pro-inflammatory cytokines and pro-apoptotic proteins and increased anti-apoptotic protein Bcl-2. Immunohistochemical analysis of liver tissues of HgCl2-treated rats confirmed the alternations of apoptotic-related protein expression. Our data demonstrated that post-administration of ZCE attenuated HgCl2-induced liver damage by activating the Nrf2/HO-1 signaling pathway. Therefore, administering this extract may be a novel therapeutic strategy for inorganic mercury intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ziziphus , Animais , Antioxidantes/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Masculino , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ziziphus/metabolismo
12.
Comb Chem High Throughput Screen ; 24(10): 1593-1602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32964820

RESUMO

BACKGROUND: Lead (Pb) remains a common contaminant in the environment in many parts of the world. Pb exposure adversely affects many human organs, including the gonads, via oxidant and inflammatory marker propagation in affected tissues. Moringa oleifera leaf extract (MOE) is a rich source of antioxidants, reported to have robust anti-inflammatory properties. AIMS: This investigation assessed whether MOE could mitigate testicular damage caused by Pb acetate treatment in rats. METHODS: Four experimental groups were used: control animals (saline only), MOE (MOE only), PbAc (Pb acetate injection only), and MOE+PbAc. All treatments were administered for two weeks, after which animals were sacrificed, and tissues and serum were examined. To confirm the potential antioxidant effect of MOE, the total polyphenolic (TP) and flavonoid (TF) concentrations were determined. RESULTS: The obtained results revealed that the TP concentration was 17.4 mg gallic acid equivalents per gram MOE dried weight and the TF concentration was 5.6 mg of quercetin equivalents per gram MOE dried weight. Moreover, MOE partially restored levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and testosterone and significantly attenuated oxidative stress biomarkers, malondialdehyde (MDA) and nitric oxide (NO), compared to levels observed in the PbAc-only group. MOE significantly increased the enzymatic and non-enzymatic antioxidant molecules superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), and glutathione (GSH). Testicular levels of inflammatory cytokines tumor necrosis factor-alpha (TNFα) and interleukin-1beta (IL-1ß) were significantly decreased in MOE+PbAc compared to PbAc. MOE also significantly decreased pro-apoptotic Bax and caspase- 3 mRNA and protein levels and increased anti-apoptotic Bcl-2 mRNA and protein levels. CONCLUSION: MOE extract was associated with significant antioxidant, anti-inflammatory, and anti- apoptotic activity that ameliorated testicular damage induced by Pb acetate. MOE is proposed as a favorable adjuvant to existing treatments for Pb-induced toxicity.


Assuntos
Antioxidantes/farmacologia , Moringa oleifera/química , Extratos Vegetais/farmacologia , Testículo/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Masculino , Compostos Organometálicos/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Wistar , Testículo/patologia
13.
J Food Biochem ; 45(1): e13579, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300136

RESUMO

In this study, we investigate the potential protective effect of Moringa oleifera Lam. extract (MOE) against lead-induced neurotoxicity. Wistar rats were allocated equally into (a) a control group, (b) a lead acetate (PbAc) group intraperitoneally injected with 20 mg/kg PbAc, (c) a MOE group orally gavaged with MOE (250 mg/kg), and (d) a MOE + PbAc group orally gavaged with MOE 3 hr before receiving intraperitoneal injections of PbAc. All rats were treated for 14 days. Our results revealed that PbAc-induced brain injury, accompanied by increased levels of oxidative stress markers. Moreover, Pb enhanced the inflammatory response and triggered neuronal apoptosis, as well as significantly depleted glutathione content and inhibited antioxidant enzyme activity. Interestingly, concurrent treatment with MOE ameliorated oxidative stress, inflammation, and apoptosis in the brain cortex. The current study provides evidence that MOE has the potential to protect neuronal tissues in PbAc-exposed rats via attenuation of nuclear factor-kappa B (NF-κB) signaling. PRACTICAL APPLICATIONS: This study reports the potential neuroprotective effect of Moringa oleifera Lam. (MOE) against lead-induced cortical brain toxicity. Our data reveal that PbAc-induced oxidative stress, neuroinflammation, and apoptosis in cortical tissues. However, simultaneous treatment of rats with MOE abrogated cortical brain inflammatory biomarkers, mitigated cortical tissue damage, and restrained oxidative stress, programmed cell death, and nuclear factor-kappa B (NF-κB) translocation. In addition, MOE stimulated detoxifying enzymes in PbAc-treated rats. These findings provide evidence that simultaneous treatment with MOE has the potential to attenuate PbAc-induced brain damage in rats by restraining oxidative stress, neuroinflammation, and apoptosis via attenuation of NF-κB signaling.


Assuntos
Moringa oleifera , Animais , Apoptose , Córtex Cerebral , Inflamação , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
14.
Mol Biol Rep ; 47(10): 7517-7527, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32920759

RESUMO

We investigated the palliative effect of Artemisia judaica extract (AjE) on testicular deterioration induced by DM in high-fat diet/streptozocin (HFD/STZ)-injected rats. Forty rats were allocated to the following five groups: control, AjE, HFD/STZ, HFD/STZ-AjE, and HFD/STZ-metformin. HFD/STZ-diabetic rats showed a marked decrease in testicular weight and male sex hormones. There was significant suppression of testicular antioxidant enzymes and glutathione content in HFD/STZ-diabetic rats. However, rats that had received the STZ injection and the high-fat diet displayed increased malondialdehyde content and nitric oxide levels as well as tumour necrosis factor-alpha. High levels of Bax and low levels of Bcl-2 were detected after the STZ injection. Obvious pathological alterations were found in the testicular tissue of the HFD/STZ-diabetic rats. Thus, the administration of AjE attenuated the biochemical, molecular, and histopathological changes in the testes of the diabetic rats. The obtained findings showed that AjE treatment attenuated the diabetes-induced reprotoxicity in male rats via its antioxidant, anti-inflammatory, and antiapoptotic properties.


Assuntos
Artemisia/química , Complicações do Diabetes , Diabetes Mellitus Experimental , Extratos Vegetais/farmacologia , Doenças Testiculares , Animais , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/etiologia , Doenças Testiculares/metabolismo , Doenças Testiculares/patologia
15.
Environ Sci Pollut Res Int ; 27(32): 40525-40536, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666453

RESUMO

Diabetes mellitus (DM) is one of the most dangerous incurable diseases that affects a large number of people worldwide. Artemisia species have various protective activities and are widely used for the control of diabetes in folkloric medicine. Therefore, the current study was designed to illustrate the protective effect of oral administration of Artemisia judaica extract (AjE) against hepatorenal damage in a high-fat diet/streptozotocin (HFD/STZ) rat model of hyperlipidemia and hyperglycemia. Animals were divided into five groups-control, AjE, HFD/STZ, HFD/STZ-AjE (300 mg/kg), and HFD/STZ-MET (100 mg/kg)-and treated daily for 28 days. The results revealed that STZ-injected rats showed marked hyperglycemia and hypoinsulinemia in addition to high levels of cholesterol, triglycerides, and low- and high-density lipoproteins compared to control rats. Significant elevations in hepatic (AST and ALT) and renal (urea, uric acid, and creatinine) function markers were observed in the serum of diabetic rats. Additionally, STZ injection caused remarkable elevations in lipid peroxidation and nitric oxide levels as well as suppression of antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione). Marked elevations in TNF-α and Bax levels with a decline in Bcl-2 levels were detected after STZ injection. Furthermore, TGF-ß1 expression levels were significantly upregulated in the liver and kidney tissues. Rats that received AjE or MET showed significant improvement in most of the aforementioned parameters, and the protective efficacy was higher for AjE than for MET. Histopathological screening confirmed the biochemical findings. Conclusively, our results illustrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and antiapoptotic activities of AjE against hepatorenal injury in HFD/STZ-induced diabetes.


Assuntos
Artemisia , Diabetes Mellitus Experimental , Metformina , Animais , Antioxidantes , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fígado , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Estreptozocina
16.
An Acad Bras Cienc ; 92(2): e20191237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32638872

RESUMO

This study was designed to investigate the potential defensive strategy of Sana Makki extract (SME) against Cd-induced in vivo nephrotoxicity and its underlying mechanisms. Male albino rats were used in a thirty days study comparing control, SME-treated, CdCl2-treated, and combined SME and Cd treatment. Pre-treatment with SME significantly reduced serum kidney biomarkers (urea and creatinine), the concentration of renal KIM-1, and kidney index values. Additionally, SME also attenuated CdCl2-induced oxidative and nitrosative stress in renal tissue; significantly reducing malondialdehyde (MDA) and nitric oxide (NO) concentrations and significantly increasing antioxidant enzymes in kidney tissue. Molecularly, SME significantly upregulated antioxidant gene expression (SOD2, GR, GPx1, and CAT) caused by Cd. Notably, the augmented mRNA expression of nuclear-related factor 2 (Nrf2) by Cd was enhanced by SME administration. SME markedly suppressed the Cd-induced rise in pro-inflammatory cytokines. The combination of Cd and SME relieved the Cd-induced apoptotic damage by enhancing Bcl2 and suppressing Bax and Cas-3 levels in renal tissue. The renal tissue histoarchitecture confirmed the biochemical and molecular findings. Collectively, our data indicate that SME can counteract Cd-induced renal intoxication through anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms.


Assuntos
Cassia , Animais , Antioxidantes , Cádmio , Rim , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Senosídeos
17.
Environ Sci Pollut Res Int ; 27(27): 33723-33731, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529628

RESUMO

Lead (Pb) is an environmental toxicant; its consumption can induce renal deficits. In this study, we explored the possible protective efficiency of Moringa oleifera extract (MOE) against lead acetate (PbAc)-mediated reprotoxicity. Four experimental groups of seven rats each were used: control, PbAc, MOE, and MOE+PbAc groups. All groups were given their respective treatment for 4 weeks. PbAc impaired the oxidative/antioxidative balance in the renal tissue, as shown by the decreased antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) and increased oxidants (lipid peroxidation and nitric oxide). Additionally, PbAc enhanced the progression of kidney inflammation by increasing tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B associated with upregulation of inducible nitric oxide synthase. Moreover, a dysregulation in the apoptotic-regulating proteins (Bax, caspase-3, and Bcl2) were recorded upon PbAc exposure. Remarkably, MOE oral administration restored redox homeostasis, suppressed the inflammatory and apoptotic responses in the kidney tissue. Our findings point out that MOE could be used as an alternative remedy to overcome the adverse effects of Pb exposure, which may be due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes/farmacologia , Moringa oleifera , Compostos Organometálicos , Acetatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Chumbo/toxicidade , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
18.
J Food Biochem ; 44(8): e13337, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588466

RESUMO

Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1  day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.


Assuntos
Artemisia , Diabetes Mellitus Experimental , Animais , Antioxidantes , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Estreptozocina/toxicidade
19.
Environ Sci Pollut Res Int ; 27(16): 19877-19887, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227301

RESUMO

This experiment explored the potential hepatic protective effect of Moringa oleifera Lam. methanolic extract (MOE) against lead-induced hepatotoxicity. Thirty-two adult Wistar albino rats were allocated randomly equally into four groups, seven rats each. The control group received intraperitoneal (i.p.) injections of physiological saline (0.9% NaCl); the lead acetate (Pb) group was i.p. injected with 20 mg/kg of Pb; the MOE group was orally administered with 250 mg/kg of MOE; and the MOE+ Pb group was orally treated with 250 mg/kg of MOE 3 h before receiving i.p. injections of 20 mg/kg Pb. All rats received their treatment for 14 days. Results revealed that Pb(II) intoxication induced liver injury accompanied by elevated levels of liver function markers (ALT and AST), oxidative stress markers (MDA and NO), and proinflammatory cytokines (NF-κB p65, TNFα, and IL-1ß as well iNOS expression) in addition to the pro-apoptotic-related proteins such as Bax and caspase-3. Meanwhile, significantly depleted GSH content, suppressed activity of antioxidant enzyme activity, and anti-apoptotic protein Bcl-2 were also manifested in the liver tissue. Interestingly, concurrent treatment of rats with MOE ameliorated liver markers, prevented tissue injury, and inhibited oxidative stress, apoptosis, and NF-κB. In addition, MOE activated the detoxifying enzyme system in Pb(II)-intoxicated rats. Therefore, the obtained results in the present experiment provide evidence that MOE concurrent administration has the potential to protect the liver tissues in Pb(II)-intoxicated rats by preventing oxidative stress, inflammation, and apoptosis, via attenuation of NF-κB signaling pathway.


Assuntos
Moringa oleifera , Animais , Antioxidantes , Inflamação , Chumbo , Fígado , Metanol , Estresse Oxidativo , Extratos Vegetais , Ratos , Ratos Wistar
20.
Int J Nanomedicine ; 15: 1537-1548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210550

RESUMO

INTRODUCTION: Extensive use of metallic nanomaterials in different areas of agriculture and commercial products induce significant harmful effects on human health and the environment. In the current study, we synthesized an eco-friendly approach silver nanoparticles (AgNPs) using root extracts of Beta vulgaris L. METHODS: The synthesized green silver nanoparticles (gAgNPs) were characterized by dynamic light scattering (DLS) and high-resolution transmission electron microscope (HR-TEM). The gAgNPs had a round shape and the mean size was 20-50 nm. The cytotoxic effects of gAgNPs were determined in human hepatic normal (CHANG) and cancer (HUH-7) cells by using tetrazolium salt (MTT) and lactate dehydrogenase (LDH) assays for 24 h. RESULTS AND DISCUSSION: It was clear from the observations of this experiment that higher concentrations of gAgNPs reduce cell viability. The production of reactive oxygen species (ROS) was evaluated by using DCFDA. The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells. The fragmentation of DNA was evaluated by alkaline single-cell gel electrophoresis and the maximum DNA strand breakage was found at a higher concentration exposure of gAgNPs for 24 h. It is important to notice that the HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells. The apoptotic and necrotic effects of gAgNPs on both the cells were evaluated using annexin-V-FITC and propidium iodide staining. An increased count of apoptotic and necrotic cells was found following a higher concentration exposure of gAgNPs. The apoptotic protein expression in these cells due to gAgNPs exposure was determined using immunoblotting techniques and the level of Bcl2 was decreased. However, the expression of BAX and protein was increased in both cells. CONCLUSION: Therefore, it can be concluded that higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/química , Prata/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Beta vulgaris/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Química Verde , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanopartículas Metálicas/administração & dosagem , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA