Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 123(12): 2009-2029, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070493

RESUMO

Hematopoietic stem cells (HSCs), which are multipotent and have the ability to self-renew, are frequently used in the treatment of hematological diseases and cancer. Small molecules that target HSC quiescence regulators could be used for ex vivo expansion of both mobilized peripheral blood (mPB) and umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC). We identified and investigated 35 small molecules that target HSC quiescence factors. We looked at how they affected HSC activity, such as expansion, quiescence, multilineage capacity, cycling ability, metabolism, cytotoxicity, and genotoxicity. A transplantation study was carried out on immunocompromised mice to assess the expanded cells' repopulation and engraftment abilities. 4-[(5Z)-5-benzylidene-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]benzoic acid (BML)-260 and tosyl-l-arginine methyl ester (TAME) significantly increased both mPB and UCB-HSPC content and activated HSC re-entry into the cell cycle. The improved multilineage capacity was confirmed by the colony forming unit (CFU) assay. Furthermore, gene expression analysis revealed that BML-260 and TAME molecules aided HSC expansion by modulating cell cycle kinetics, such as p27, SKP2, and CDH1. In addition to these in vitro findings, we discovered that BML-260-expanded HSCs had a high hematopoietic reconstitution capacity with increased immune cell content after xenotransplantation into immunocompromised mice. In addition to the BML-260 molecule, a comparison study of serum-containing and serum-free chemically defined media, including various supplements, was performed. These in vitro and xenotransplantation results show that BML-260 molecules can be used for human HSC expansion and regulation of function. Furthermore, the medium composition discovered may be a novel platform for human HSPC expansion that could be used in clinical trials.


Assuntos
Sangue Fetal , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas
2.
J Cell Biochem ; 123(12): 1966-1979, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029519

RESUMO

There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.


Assuntos
Neoplasias Hematológicas , Hipertermia Induzida , Células-Tronco Mesenquimais , Humanos , Interleucina-6/metabolismo , Tonsila Palatina/metabolismo , Regulação para Baixo , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Meios de Cultivo Condicionados/farmacologia
3.
Sci Rep ; 10(1): 7994, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409701

RESUMO

Meis1, which belongs to TALE-type class of homeobox gene family, appeared as one of the key regulators of hematopoietic stem cell (HSC) self-renewal and a potential therapeutical target. However, small molecule inhibitors of MEIS1 remained unknown. This led us to develop inhibitors of MEIS1 that could modulate HSC activity. To this end, we have established a library of relevant homeobox family inhibitors and developed a high-throughput in silico screening strategy against homeodomain of MEIS proteins using the AutoDock Vina and PaDEL-ADV platform. We have screened over a million druggable small molecules in silico and selected putative MEIS inhibitors (MEISi) with no predicted cytotoxicity or cardiotoxicity. This was followed by in vitro validation of putative MEIS inhibitors using MEIS dependent luciferase reporter assays and analysis in the ex vivo HSC assays. We have shown that small molecules named MEISi-1 and MEISi-2 significantly inhibit MEIS-luciferase reporters in vitro and induce murine (LSKCD34l°w cells) and human (CD34+, CD133+, and ALDHhi cells) HSC self-renewal ex vivo. In addition, inhibition of MEIS proteins results in downregulation of Meis1 and MEIS1 target gene expression including Hif-1α, Hif-2α and HSC quiescence modulators. MEIS inhibitors are effective in vivo as evident by induced HSC content in the murine bone marrow and downregulation of expression of MEIS target genes. These studies warrant identification of first-in-class MEIS inhibitors as potential pharmaceuticals to be utilized in modulation of HSC activity and bone marrow transplantation studies.


Assuntos
Desenvolvimento de Medicamentos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Proteína Meis1/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Biomarcadores , Células da Medula Óssea , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Genes Reporter , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteína Meis1/química , Conformação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA