Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 762: 144116, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33383302

RESUMO

Bees can be severely affected by various plant protection products (PPP). Among these, neonicotinoid insecticides are of concern as they have been shown to be responsible for extensive honeybee colonies death when released into the environment. Also, sublethal neonicotinoid doses contaminating single honeybees and their colonies (e.g. through contaminated pollen) are responsible for honeybees physiological alterations with probable implication also on microbiome functionality. Honeybees show symbiotic interactions with specific gut bacteria that can enhance the adult host performances. Among the known mechanisms, the modulation of the immune system, the degradation of recalcitrant secondary plant metabolites, pollen digestion, and hormonal signaling, are the most important functional benefits for the host honeybee. To date, few research efforts have aimed at revealing the impact of PPP on the gut microbial community of managed and wild honeybees. The majority of the existing literature relays on cage or semifield tests of short duration for research investigating neonicotinoids-gut microbiome interactions. This research wanted to unravel the impact of two neonicotinoids (i.e. imidacloprid and thiacloprid) in natural field conditions up to 5 weeks of exposure. A long-term impact of neonicotinoids on gut microbial community of honeybees was observed. The alterations affected several microbial genera and species such as Frischella spp., lactobacilli and bifidobacteria, whose shifting is implicated in intestinal dysbiosis. Long-term impact leading to dysbiosis was detected in case of exposure to imidacloprid, whereas thiacloprid exposure stimulated temporary dysbiosis. Moreover, the microbial diversity was significantly reduced in neonicotinoid-treated groups. Overall, the reported results support a compromised functionality of the gut microbial community, that might reflect a lower efficiency in the ecosystemic functionality of honeybees.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Animais , Abelhas , Ecossistema , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Pólen
2.
Benef Microbes ; 9(2): 269-278, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29380644

RESUMO

Honey bees are important pollinators of several crops and ecosystems, having a great ecological and economic value. In Europe, the restricted use of chemicals and therapeutic agents in the beekeeping sector has stimulated the search for natural alternatives with a special focus on gut symbionts. The modulation of the gut microbiota has been recognised as a practical and successful approach in the entomological field for the management of insect-related problems. To date, only a few studies have investigated the effect of bacterial supplementation on the health status of colonies, colony productivity and gut symbionts. To this purpose, a preparation of sugar syrup containing bifidobacteria and lactobacilli isolated from bee gut was sprayed on the frames of an apiary located in open field once a week for four weeks. Treated and control hives were monitored for two months for brood extension, honey and pollen harvest. The presence of beneficial gut microorganisms within bee gut was investigated with denaturing gradient gel electrophoresis and next generation sequencing. The administered bacteria led to a significant increase of brood population (46.2%), pollen (53.4%) and harvestable honey in honey supers (59.21%). Analysis of the gut microbiota on the new generation of bees in treated hives showed an increase in relative abundance of Acetobacteraceae and Bifidobacterium spp., which are known to be involved in bee nutrition and protection.


Assuntos
Abelhas/microbiologia , Bifidobacterium/fisiologia , Suplementos Nutricionais , Lactobacillus/fisiologia , Probióticos , Ração Animal , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bifidobacterium/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Lactobacillus/genética , RNA Ribossômico 16S/genética
3.
Benef Microbes ; 7(1): 45-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26565084

RESUMO

Nosema ceranae is a widespread microsporidium of European honeybee Apis mellifera L. affecting bee health. The ban of Fumagillin-B (dicyclohexylammonium salt) in the European Union has driven the search for sustainable strategies to prevent and control the infection. The gut microbial symbionts, associated to the intestinal system of vertebrates and invertebrates and its impact on host health, are receiving increasing attention. In particular, bifidobacteria and lactobacilli, which are normal inhabitants of the digestive system of bees, are known to protect their hosts via antimicrobial metabolites, immunomodulation and competition. In this work, the dietary supplementation of gut bacteria was evaluated under laboratory conditions in bees artificially infected with the parasite and bees not artificially infected but evidencing a low natural infection. Supplemented bacteria were selected among bifidobacteria, previously isolated, and lactobacilli, isolated in this work from healthy honeybee gut. Four treatments were compared: bees fed with sugar syrup (CTR); bees fed with sugar syrup containing bifidobacteria and lactobacilli (PRO); bees infected with N. ceranae spores and fed with sugar syrup (NOS); bees infected with N. ceranae and fed with sugar syrup containing bifidobacteria and lactobacilli (NP). The sugar syrup, with or without microorganisms, was administered to bees from the first day of life for 13 days. N. ceranae infection was carried out individually on anesthetised 5-day-old bees. Eight days after infection, a significant (P<0.05) lower level of N. ceranae was detected by real-time PCR in both NP and PRO group, showing a positive effect of supplemented microorganisms in controlling the infection. These results represent a first attempt of application of bifidobacteria and lactobacilli against N. ceranae in honeybees.


Assuntos
Abelhas/microbiologia , Bifidobacterium , Lactobacillus , Nosema , Ração Animal , Animais , Bifidobacterium/genética , Suplementos Nutricionais , Lactobacillus/genética , RNA Bacteriano , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA