RESUMO
The healthy properties of berries are known; however, red fruits are very perishable, generating large losses in production and marketing. Nonetheless, these wastes can be revalued and used. The main objective of this study was the development of biodegradable pectin films with berry agro-industrial waste extracts to monitor salmon shelf-life. The obtained extracts from blueberries, blackberries, and raspberries wastes were evaluated in terms of flavonols, phenols and anthocyanins contents, and antioxidant capacity. Then, pectin films with the extracts of different berries were developed and characterized. The results showed that the blueberry extract film was thicker (0.248 mm), darker (L* = 61.42), and opaquer (17.71%), while the highest density (1.477 g/cm3) was shown by the raspberry films. The results also showed that blueberries were the best for further application due to their composition in bioactive compounds, antioxidant capacity, and color change at different pHs. The salmon samples wrapped in blueberry films showed lower values of pH and deterioration of fish during storage compared to the control and pectin samples. This study contributes to the valorization of berries agro-industrial waste by the development of eco-friendly films that can be used in the future as intelligent food packaging materials contributing to the extension of food shelf-life as a sustainable packaging alternative.
Assuntos
Mirtilos Azuis (Planta) , Rubus , Salmo salar , Animais , Antocianinas/química , Antioxidantes/química , Mirtilos Azuis (Planta)/química , Embalagem de Alimentos/métodos , Frutas/química , Resíduos Industriais/análise , Pectinas/análiseRESUMO
BACKGROUND: The inhibitory effect of chitosan films with clove oil (0-50 g kg(-1) ) was evaluated on a range of ten representative food spoilage and pathogenic bacteria. RESULTS: The most sensitive bacteria to the films was Shewanella putrefaciens and the most resistant was Aeromonas hydrophila (inhibition was apparent only at 50 g kg(-1) clove essential oil (CEO)). Films with 20 g kg(-1) CEO inhibited nine of ten of the bacteria tested. Chitosan films with 20 g kg(-1) CEO were combined with high-pressure (HPP) processing as treatments for trout fillets, and changes in physicochemical parameters and microbial load were evaluated at 4 °C over 22 days of storage. The films reduced weight loss and water activity compared to fresh and treated samples (HPP and cooking). Results showed that microbial load (total aerobic mesophilic, lactic acid bacteria and total coliform) of the trout fillets covered with chitosan films was lower than that for HPP-treated samples, and similar to cooked samples, except for coliform counts. CONCLUSION: The use of 20 g kg(-1) CEO-chitosan films showed a further improvement in the shelf-life of trout fillets when compared to that obtained with HPP and cooking treatment.