Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 142(3): 775-86, 1998 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-9700165

RESUMO

Extracting isolated Drosophila centrosomes with 2 M KI generates salt-resistant scaffolds that lack the centrosomal proteins CP190, CP60, centrosomin, and gamma-tubulin. To clarify the role of these proteins in microtubule nucleation by centrosomes and to identify additional centrosome components required for nucleation, we have developed an in vitro complementation assay for centrosome function. Centrosome aster formation is reconstituted when these inactive, salt-stripped centrosome scaffolds are supplemented with a soluble fraction of a Drosophila embryo extract. The CP60 and CP190 can be removed from this extract without effect, whereas removing the gamma-tubulin destroys the complementing activity. Consistent with these results, we find no evidence that these three proteins form a complex together. Instead, gamma-tubulin is found in two distinct protein complexes of 240,000 and approximately 3,000,000 D. The larger complex, which is analogous to the Xenopus gamma-tubulin ring complex (gammaTuRC) (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), is necessary but not sufficient for complementation. An additional factor found in the extract is required. These results provide the first evidence that the gammaTuRC is required for microtubule nucleation at the centrosome.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Ciclo Celular , Centrossomo/efeitos dos fármacos , Drosophila , Iodatos/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Compostos de Potássio/farmacologia , Sais/metabolismo , Xenopus
2.
J Biol Chem ; 266(30): 20024-33, 1991 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-1939066

RESUMO

The DNA polymerase holoenzyme of bacteriophage T4 contains, besides the DNA polymerase itself (the gene 43 protein), a complex of the protein products of T4 genes 44 and 62 (a DNA-dependent ATPase) and of gene 45. Together, the 44/62 and 45 proteins form an ATP-dependent "sliding clamp" that holds a moving DNA polymerase molecule at the 3' terminus of a growing DNA chain. We have used a unique DNA fragment that forms a short hairpin helix with a single-stranded 5' tail (a "primer-template junction") to map the binding sites for these polymerase accessory proteins by DNA footprinting techniques. In the absence of the DNA polymerase, the accessory proteins protect from DNase I cleavage 19-20 nucleotides just behind the 3' end of the primer strand and 27-28 nucleotides on the complementary portion of the template strand. Detection of this DNA-protein complex requires the 44/62 and 45 proteins plus the nonhydrolyzable ATP analogue adenosine 5'-O-(thiotriphosphate). The complex is not detected in the presence of ATP. We suggest that ATP hydrolysis by the 44/62 protein normally activates the accessory proteins at a primer-template junction, permitting the DNA polymerase to bind and thus form the complete holoenzyme. However, when the polymerase is missing, as in these experiments, ATP hydrolysis is instead followed by a release (or loosening) of the accessory protein complex.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Fagos T/enzimologia , Moldes Genéticos , Autorradiografia , Sequência de Bases , Impressões Digitais de DNA , DNA Polimerase III , DNA Viral/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Especificidade por Substrato
3.
J Biol Chem ; 255(9): 4290-3, 1980 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-6989836

RESUMO

A wide variety of double-stranded DNA templates are replicated extensively in an in vitro DNA replication system containing the purified proteins specified by seven T4 bacteriophage DNA replication genes (32, 41, 43, 44, 62, 45, and 61). In favorable conditions, this multiprotein system catalyzes the synthesis of several copies of the input DNA template in a 30- to 60-min incubation. The replication forks produced in vitro move in a highly processive fashion, at approximately the in vivo rate of 500 nucleotides per s. The DNA synthesized on the lagging side of the in vitro replication fork is made discontinuously, as it is in vivo, giving rise to "Okazaki pieces" averaging some 10,000 nucleotides in length; in contrast, DNA is polymerized in a continuous manner on the leading side of the in vitro fork. Although the mechanism by which the seven-protein in vitro DNA replication system propagates replication forks closely resembles the in vivo mechanism, it lacks the capacity to remove RNA primers, to reseal Okazaki pieces, and to initiate replication forks at defined DNA origins; supplementation of the system with additional T4-specific replication proteins will be required to facilitate these latter three functions.


Assuntos
DNA Viral/biossíntese , Escherichia coli/metabolismo , Fagos T/metabolismo , DNA Viral/isolamento & purificação , Cinética , Magnésio/farmacologia , Microscopia Eletrônica , Conformação de Ácido Nucleico , Potássio/farmacologia , Moldes Genéticos , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA