Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(2-3): 691-717, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36595038

RESUMO

Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.


Assuntos
Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolismo , Proteômica/métodos , Penicillium/metabolismo , Extratos Vegetais/metabolismo , Proteínas Fúngicas/metabolismo
2.
Food Chem ; 194: 447-54, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26471578

RESUMO

The traceability of olive oil is an unresolved issue that remains a challenge. In this field, DNA-based techniques are very powerful tools for discrimination that are less negatively influenced by environmental conditions than other techniques. More specifically, quantitative real time PCR (qPCR) achieves a high degree of sensitivity, although the DNA that it can directly isolate from these oils presents drawbacks. Our study reports the analysis of eight systems, in order to determine their suitability for olive detection in oil and oil-derived foodstuffs. The eight systems were analyzed on the basis of their sensitivity and specificity in the qPCR assay, their relative sensitivity to olive DNA detection and DNA mixtures, their sensitivity and specificity to olive in vegetable oils and the detection of olive in commercial products. The results show that the PetN-PsbM system, designed in this study, is a suitable and reliable technique in relation to olive oil and olive ingredients in both food authentication and food safety processes.


Assuntos
Análise de Alimentos/métodos , Olea/genética , Azeite de Oliva/análise , Óleos de Plantas/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Óleo de Milho/análise , DNA de Plantas/análise , Eletroforese em Gel de Ágar , Ácidos Graxos Monoinsaturados/análise , Óleo de Brassica napus , Reprodutibilidade dos Testes , Óleo de Gergelim/análise , Óleo de Soja/análise , Óleo de Girassol
3.
Microb Cell Fact ; 14: 178, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553209

RESUMO

BACKGROUND: Some types of flavonoid intermediates seemed to be restricted to plants. Naringenin is a typical plant metabolite, that has never been reported to be produced in prokariotes. Naringenin is formed by the action of a chalcone synthase using as starter 4-coumaroyl-CoA, which in dicotyledonous plants derives from phenylalanine by the action of a phenylalanine ammonia lyase. RESULTS: A compound produced by Streptomyces clavuligerus has been identified by LC-MS and NMR as naringenin and coelutes in HPLC with a naringenin standard. Genome mining of S. clavuligerus revealed the presence of a gene for a chalcone synthase (ncs), side by side to a gene encoding a P450 cytochrome (ncyP) and separated from a gene encoding a Pal/Tal ammonia lyase (tal). Deletion of any of these genes results in naringenin non producer mutants. Complementation with the deleted gene restores naringenin production in the transformants. Furthermore, naringenin production increases in cultures supplemented with phenylalanine or tyrosine. CONCLUSION: This is the first time that naringenin is reported to be produced naturally in a prokariote. Interestingly three non-clustered genes are involved in naringenin production, which is unusual for secondary metabolites. A tentative pathway for naringenin biosynthesis has been proposed.


Assuntos
Flavanonas/biossíntese , Plantas/metabolismo , Streptomyces/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aciltransferases/deficiência , Aciltransferases/genética , Sequência de Aminoácidos , Amônia-Liases/química , Amônia-Liases/deficiência , Amônia-Liases/genética , Amônia-Liases/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/deficiência , Sistema Enzimático do Citocromo P-450/genética , Flavanonas/análise , Flavanonas/química , Genoma Bacteriano , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Fenilalanina/metabolismo , Plantas/química , Alinhamento de Sequência , Streptomyces/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA