Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 1777631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760474

RESUMO

The objective of the present study was to develop a novel nanogel containing Beta vulgaris L. hydroalcoholic extract and assess its efficacy for treating testosterone-induced alopecia. Beta vulgaris L. leaf hydroalcoholic extract nanogel (BVEN) was prepared by ionic gelation method, incorporated in carbopol 934 gel. Optimization of particle size and entrapment efficiency as the responses was carried out by central composite design response surface methodology. Prepared nanoparticles were evaluated for entrapment efficiency, particle size, zeta potential, polydispersity index, Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Nanogel was evaluated for pH, colour, appearance and homogeneity, viscosity, spreadability, in vitro release study, and stability studies. Further, 2.5% and 5% BVEN were also evaluated for antialopecic activity in Swiss albino mice by using parameters as hair growth initiation, testosterone content, total protein, prostate weight measurement, hair follicular density, anagen/telogen ratio, and histopathological studies. The resulting nanoparticles had better entrapment efficiency with particle size of 274 nm, polydispersity index of 0.259, and zeta potential of +28.8. BVEN pH 6.5, drug content, i.e., quercetin 99.84 ± 1.30% and stigmasterol 99.89 ± 1.52%, spreadability 20.3 ± 0.5925 g cm/sec, and viscosity 110 × 105 cps were observed. Stability studies showed that nanogel was stable at 4°C ± 2°C/60% ± 5% RH. It was found that 5% BVEN showed better antialopecic activity as compared to 2.5% BVEN.


Assuntos
Beta vulgaris , Nanopartículas , Masculino , Animais , Camundongos , Nanogéis , Testosterona , Nanopartículas/química , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Biomed Pharmacother ; 158: 114114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525818

RESUMO

Tridax procumbens (cotton buttons) is a flowering plant with a medicinal reputation for treating infections, wounds, diabetes, and liver and kidney diseases. The present research was conducted to evaluate the possible protective effects of the T. procumbens methanolic extract (TPME) on an experimentally induced type 2 diabetes rat model. Wistar rats with streptozotocin (STZ)-induced diabetes were randomly allocated into five groups of five animals each, viz., a normal glycemic group (I), diabetic rats receiving distilled water group (II), diabetic rats with 150 (III) and 300 mg/kg of TPME (IV) groups, and diabetic rats with 100 mg/kg metformin group (V). All treatments were administered for 21 consecutive days through oral gavage. Results: Administration of the T. procumbens extract to diabetic rats significantly restored alterations in levels of fasting blood glucose (FBG), body weight loss, serum and pancreatic insulin levels, and pancreatic histology. Furthermore, T. procumbens significantly attenuated the dyslipidemia (increased cholesterol, low-density lipoprotein-cholesterol (LDL-C), triglycerides, and high-density lipoprotein (HDL) in diabetic rats), serum biochemical alterations (alanine transaminase (ALT), aspartate transaminase (AST), alanine phosphatase (ALP), blood urea nitrogen (BUN), creatinine, uric acid, and urea) and full blood count distortion in rats with STZ-induced diabetes. The TPME also improved the antioxidant status as evidenced by increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and decreased malondialdehyde (MDA); and decreased levels of cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), and proinflammatory mediators including nuclear factor (NF)-κB, cyclooxygenase (COX)- 2, and nitrogen oxide (NOx) in the brain of rats with STZ-induced diabetes compared to rats with STZ-induced diabetes that received distilled water. However, TPME treatment failed to attenuate the elevated monoamine oxidases and decreased dopamine levels in the brain of rats with STZ-induced diabetes. Extract characterization by liquid chromatography mass spectrometry (LC-MS) identified isorhamnetin (retention time (RT)= 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 25.25 min, 2.88%) as the three most abundant bioactive compounds that could be responsible for the bioactivity of the plant. In conclusion, the TPME can be considered a promising alternative therapeutic option for managing diabetic complications owing to its antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory effects in rats with STZ-prompted diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Hiperglicemia , Ratos , Animais , Antioxidantes/metabolismo , Ratos Wistar , Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/análise , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado , Glutationa/metabolismo , Estresse Oxidativo , Óxidos de Nitrogênio/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Colesterol/metabolismo , Cognição , Água/farmacologia , Estreptozocina/farmacologia
3.
Biomed Pharmacother ; 156: 113976, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411668

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with limited treatment options. Given this fact, it may be important to develop new molecular targeted therapies from natural products, especially those which are primary sources of effective anticancer drugs with distinct mechanisms. Moreover, the complementary use of traditional herbs or fruit may increase the possibility of finding curative options for cancer. Here we explore the anticancer effects and possible molecular mechanism of Barhi date extract using an HCC rat model. Thirty two male albino rats were arbitrarily allocated into four groups: a negative control group (NCG); a positive control group (PCG), which received CCl4 (1 ml/kg b.wt./ i.p.) twice a week for three months; a Barhi date extract (400 mg/kg b.wt./day/orally) treatment group (DTG) during the third month of CCl4 administration; and a cisplatin (1.5 mg/kg b.wt./ i.p.) treatment group ( CTG) during the third month of CCl4 administration. After treatment we performed biochemical analyses of all groups to assess relative eukaryotic initiation factor 2 alpha (eIF2α), extracellular signal-regulated kinases (ERKs), protein kinase RNA-like endoplasmic reticulum kinase (PERK), poly (ADP-ribose) polymerase (PARP), and CASPASE 3 protein content, and examined expression of the genes phosphatase and tensin homolog (PTEN) and protein kinase B (AKT). We also performed an immunohistochemistry assay for alpha-fetoprotein (AFP). Our data showed higher PARP and CASPASE3 levels and liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]) in the PCG compared to the DTG and the cisplatin treatment group CTG. However, we also found a significant decrease in PTEN in the PCG relative to both the DTG and the CTG. We conclude that the anti-tumor activity of Barhi date extract may be mediated by the inhibition of cell proliferation and apoptosis via the ERK /PARP/caspase3 pathway and the AKT/ PTEN signaling pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Phoeniceae , Animais , Carcinoma Hepatocelular/patologia , Cisplatino/uso terapêutico , Neoplasias Hepáticas/patologia , Phoeniceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Ratos
4.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296555

RESUMO

Litsea glutinosa (L. glutinosa) is considered an evidence-based medicinal plant for the treatment of cancer, the leading cause of death worldwide. In our study, the in vitro antioxidant and in vivo anticancer properties of an essential ethno-medicinal plant, L. glutinosa, were examined using non-toxic doses and a phytochemical analysis was executed using gas-chromatography-mass-spectrometry. The in vitro antioxidant study of the L. glutinosa methanolic extract (LGBME) revealed a concentration-dependent antioxidant property. The bark extract showed promising antioxidant effects in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. The strongest antioxidant activity was demonstrated at the maximum concentration (50 µg/mL). The IC50 values of the LGBME and BHT were 5.51 and 5.01 µg/mL, respectively. At the same concentration, the total antioxidant capacity of the LGBME was 0.161 µg/mL and the ferric reducing antioxidant power assay result of the LGBME was 1.783 µg/mL. In the cytotoxicity study, the LD50 of the LGBME and gallic acid were 24.93 µg/mL and 7.23 µg/mL, respectively. In the in vivo anticancer-activity studies, the LGBME, particularly at a dose of 150 mg/kg/bw, showed significant cell-growth inhibition, decreased tumor weight, increased mean survival rate, and upregulated the reduced hematological parameters in EAC (Ehrlich's ascites carcinoma)-induced Swiss albino mice. The highest cell-growth inhibition, 85.76%, was observed with the dose of 150 mg/kg/bw. Furthermore, the upregulation of pro-apoptotic genes (p53, Bax) and the downregulation of anti-apoptotic Bcl-2 were observed. In conclusion, LGBME extract has several bioactive phytoconstituents, which confirms the antioxidant and anticancer properties of L. glutinosa.


Assuntos
Antioxidantes , Litsea , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hidroxitolueno Butilado , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2 , Compostos Fitoquímicos/farmacologia , Ácido Gálico
5.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234779

RESUMO

Chemotherapy is an aggressive form of chemical drug therapy aiming to destroy cancer cells. Adjuvant therapy may reduce hazards of chemotherapy and help in destroying these cells when obtained from natural products, such as medical plants. In this study, the potential therapeutic effect of Rosa damascena callus crude extract produced in vitamin-enhanced media is investigated on colorectal cancer cell line Caco-2. Two elicitors, i.e., L-ascorbic acid and citric acid at a concentration of 0.5 g/L were added to the callus induction medium. Callus extraction and the GC-MS analysis of methanolic crude extracts were also determined. Cytotoxicity, clonogenicity, proliferation and migration of Caco-2 colorectal cancer cells were investigated using MTT cytotoxicity, colony-forming, Ki-67 flow cytometry proliferation and Migration Scratch assays, respectively. Our results indicated that L-ascorbic acid treatment enhanced callus growth parameters and improved secondary metabolite contents. It showed the least IC50 value of 137 ug/mL compared to 237 ug/mL and 180 ug/mL in the citric acid-treated and control group. We can conclude that R. damascena callus elicited by L-ascorbic acid improved growth and secondary metabolite contents as well as having an efficient antiproliferative, anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used as an adjuvant anti-cancer therapy.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Rosa , Adenocarcinoma/tratamento farmacológico , Ácido Ascórbico/farmacologia , Células CACO-2 , Ácido Cítrico , Neoplasias Colorretais/tratamento farmacológico , Humanos , Antígeno Ki-67 , Extratos Vegetais/química , Rosa/química , Vitaminas
6.
Eur J Med Res ; 27(1): 186, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154838

RESUMO

BACKGROUND: Recently, the coronavirus (COVID-19) pandemic is a chief public health disaster caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are no established effective preventive or therapeutic anti-COVID-19 drugs available except for some recently approved vaccines. Still, countless recent studies recommend various alternative and complementary approaches against COVID-19, which are medicinal herbs employed as traditional remedies to enhance immunity to struggle with viral infections. In addition, physicians worldwide are highly interested in vitamin and mineral supplements to help them combat COVID-19 either through protection or treatment. Dietary supplements specifically vitamin D, vitamin C, and zinc provide good prophylactic and therapeutic support to the presently available treatment regimens. In the present work, we have focused on plant-based remedies with promising anti-COVID-19 activities. AIM: To enable investigators and researchers to identify potential herbal compounds with anti-COVID activity to be used as promising therapies to combat this pandemic. MAIN BODY: This review highlights the recently published studies concerning natural traditional herbs, herbal bioactive metabolites, dietary supplements, and functional foods that could help prevent and/or treat COVID-19. Herein, we explored medicinal herbs as potential inhibitors of SARS-CoV-2 and discussed how these studies help form larger discussions of diet and disease. Moreover, by investigating the herbal bioactive components, we have outlined several medicinal herbs that can fight against COVID-19 by hindering SARS-CoV-2 replication and entry to its host cells, deterring the cytokine storm, and several other means. Finally, we have summarized various herbal products, functional foods, and dietary supplements with potent bioactive compounds which can inhibit and/or prevent COVID-19 disease progression. CONCLUSIONS: Based on the studies reviewed in this work, it was concluded with no doubt that phytochemical components present in various herbs could have a starring role in the deterrence and cure of coronavirus contagion.


Assuntos
Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Ácido Ascórbico , Humanos , Pandemias/prevenção & controle , Compostos Fitoquímicos , Plantas Medicinais/química , SARS-CoV-2 , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Zinco
7.
Biomed Pharmacother ; 154: 113605, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030588

RESUMO

The current study evaluated the protective role of Solanum torvum Swartz against diabetes-induced oxidative stress and tissue impairment in streptozotocin (STZ)-intoxicated rats. Rats with STZ (40 mg/kg intraperitoneally (i.p.))-induced diabetes were divided into five groups (n = 5) and treated with (i) normal saline, (ii) 150 mg/kg body weight (BW) of the ethanol extract of S. torvum leaf (EESTL), (ii) 300 mg/kg BW EESTL, (iv) 100 mg/kg BW metformin, and (v) 50 m/kg BW metformin + 100 mg/kg BW EESTL orally for 21 days. Our results revealed that the EESTL displayed dose-dependent ferric-reducing antioxidant power (FRAP) activity, scavenged DPPH radicals (IC50) = 13.52 ± 0.45 µg/mL), and inhibited lipid peroxidation in an in vitro models. In addition, the EESTL demonstrated dose-dependent inhibitory activity against α-amylase (IC50 =138.46 ± 3.97 µg/mL) and promoted glucose uptake across plasma membranes of yeast cells in a manner comparable to that of metformin. Interestingly, the extract demonstrated in vivo blood glucose normalization effects with concomitant increased activities of antioxidant parameters (superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)) while decreasing malondialdehyde (MDA) levels when compared to untreated rats. Similarly, serum biochemical alterations, and tissues (liver, kidney, and pancreases) histopathological aberrations in untreated rats with STZ-induced diabetes were attenuated by treatment with the EESTL. Biometabolite characterization of the extract identified gallic acid (45.81 ppm), catechin (1.18 ppm), p-coumaric acid (1.43e-1 ppm), DL-proline 5-oxo-methyl ester (9.16 %, retention time (RT): 8.57 min), salicylic acid (3.26% and 7.61 min), and butylated hydroxytoluene (4.75%, RT: 10.18 min) as the major polyphenolic compounds in the plant extract. In conclusion, our study provides preclinical evidence of the antioxidant properties and oxidative stress-preventing role of S. torvum in STZ-dosed diabetic rats. Taken together, the EESTL represents a reserve of bioactive metabolites for managing diabetes and associated complications.


Assuntos
Diabetes Mellitus Experimental , Metformina , Solanum , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metformina/farmacologia , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos , Estreptozocina/farmacologia
8.
Ultrason Sonochem ; 89: 106133, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037596

RESUMO

Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time âˆ¼ 20 min, ethanol âˆ¼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC-MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.


Assuntos
Nardostachys , Acetilcolinesterase , Antioxidantes/química , Antioxidantes/farmacologia , Catalase , Etanol/química , Glutationa , Nardostachys/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sitosteroides , Sonicação , Superóxido Dismutase
9.
Front Med (Lausanne) ; 9: 907583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783612

RESUMO

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from -7.84 to -7.15 kcal/mol compared with the -6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

10.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889458

RESUMO

In the current study, the anti-inflammatory and analgesic potential of Alnus nitida (leaves and fruits) was evaluated in the Sprague-Dawley rat. Traditionally, A. nitida was used for the treatment of inflammatory ailments. However, A. nitida leaves and fruits have not been yet reported regarding any potential medicinal effects. Leaves/fruits of A. nitida were extracted with methanol and fractionated to attain n-hexane, chloroform, ethyl acetate and aqueous fractions. These extracts were then evaluated for in vivo analgesic and anti-inflammatory potential. For in vivo anti-inflammatory activity, carrageenan-induced paw edema assay, Freunds' complete adjuvant-induced edema, xylene-induced ear edema and histamine-induced paw edema models were used in rats, which showed significant (p < 0.01) reduction (70−80%) in edema in comparison of inflammatory controls. On other hand, for the analgesic assessment, hot plate assay and acetic acid-induced writhing tests were used, which showed a significant (p < 0.01) rise in latency time (40−60%) as compared with pain-induced controls. These results were comparable with standard drugs in a concentration-dependent manner and no mortality or toxicity was observed during all experiments. Then, for the identification of chemical constituents gas chromatography−mass spectrometry (GC-MS) analysis was performed, which indicated the presence of neophytadiene, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, phytol and vitamin E, justifying the use of A. nitida to treat inflammatory disorders.


Assuntos
Alnus , Alnus/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Carragenina/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Dor/induzido quimicamente , Dor/tratamento farmacológico , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
11.
Biomed Pharmacother ; 150: 113020, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658249

RESUMO

Liver fibrosis is a prevalent liver disease that requires rapid and effective treatment prior to its progression to cirrhosis and liver damage. Recently, several reports have investigated the efficacy of phytotherapy using natural herbal extracts rather than synthetic drugs to treat several liver diseases. Policosanol is a herbal extract used to treat patients with cardiovascular. However, its therapeutic effect on liver fibrosis is still unknown. Therefore, the present study aimed to assess the potential antifibrotic effect of policosanol compared to silymarin and the possible underlying molecular mechanisms. Rats were categorized into four groups; negative control group "NCG", the fibrotic group "FG", silymarin treated group "STG", and policosanol treated group "PTG". Serum liver enzymes, oxidative stress markers, angiogenic growth factors, and pro-inflammatory cytokines were measured biochemically. The relative mRNA expressions of liver caspase-3 and alpha-smooth muscle actin (α-SMA) were assessed. Immunohistochemical staining was carried out using anti- α-SMA, and anti-caspase-3 antibodies. Compared to NCG, the FG group demonstrated a significant decrease in the level of serum liver enzymes "GSH, TAC, and SDF. Nevertheless, it demonstrateda significant increase in the level of pro-inflammatory cytokines "Il-6, TNF"; oxidative stress markers "NO, MDA", and angiogenic growth factors "VEGF and PDGF" and the expression of α-SMA, and Caspase-3. Interestingly, the values of these measurements were restored to normal levels in the treated groups, particularly the PTG. In conclusion, our data revealed the beneficial effects of co-administration of policosanol or silymarin on the fibrotic liver rat model and thus could be a promising natural therapeutic drug.


Assuntos
Hepatopatias , Silimarina , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Tetracloreto de Carbono/farmacologia , Caspase 3/metabolismo , Citocinas/metabolismo , Suplementos Nutricionais , Álcoois Graxos , Fibrose , Humanos , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Ratos , Silimarina/farmacologia , Silimarina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA