Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234942

RESUMO

In the current decade, nanoparticles are synthesized using solvents that are environmentally friendly. A number of nanoparticles have been synthesized at room temperature using water as a solvent, such as gold (Au) and silver (Ag) nanoparticles. As part of nanotechnology, nanoparticles are synthesized through biological processes. Biological methods are the preferred method for the synthesis of inorganic nanoparticles (AgNPs) as a result of their simple and non-hazardous nature. Nanoparticles of silver are used in a variety of applications, including catalysts, spectrally selective coatings for solar absorption, optical objectives, pharmaceutical constituents, and chemical and biological sensing. Antimicrobial agents are among the top uses of silver nanoparticles. In the current study, silver nanoparticles were biologically manufactured through Madhuca longifolia, and their antibacterial activity against pathogenic microorganisms, anticancer, anti-inflammatory, and antioxidant activities were assessed. UV-Vis spectroscopy, XRD (X-ray diffraction), transmission electron microscopy, Zeta Potential, and FTIR were used to characterize silver nanoparticles. The current work describes a cheap and environmentally friendly method to synthesize silver nanoparticles from silver nitrate solution by using plant crude extract as a reducing agent.


Assuntos
Anti-Infecciosos , Madhuca , Nanopartículas Metálicas , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Redutoras , Prata/farmacologia , Nitrato de Prata , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
2.
Artigo em Inglês | MEDLINE | ID: mdl-35928245

RESUMO

Medicinal plants have been crucial in treating various chronic ailments since ancient times. The objective of this study was to evaluate in vitro pharmacological properties of petroleum ether, chloroform, and ethyl acetate soluble fractions of ethanolic extract (leaf, bark, and root) of Heritiera fomes Buch. Ham., including the phytochemical screening of the plant. Thrombolytic and antiarthritic properties were assessed through the clot lysis and protein denaturation experimental method, correspondingly. Anthelmintic and insecticidal activities were studied against Pheretima posthuma and Tribolium castaneum, respectively. The phytochemical analysis exhibited numerous active phytochemicals in different solvent fractions. In thrombolytic investigation, among all crude extracts, ethanolic leaf extract showed the highest 33.12 ± 7.52% clot lysis as compared to standard streptokinase (67.77 ± 9.78%). In antiarthritic assay, all the tested samples exhibited noteworthy protein denaturation in dose-dependent manner (100-500 µg/mL), whereas the utmost percentage inhibition was noticed for chloroform extract of roots (63.28 ± 5.96% at 500 µg/mL). All crude extracts exhibited a significant anthelmintic activity in different concentrations (25-75 mg/mL) and revealed paralysis and death of earthworms in comparison with albendazole; ethanolic extract of the bark was found to be more potent at the highest dose. For the insecticidal test, ethanolic extract of the leaf showed the utmost mortality rate (73%). The outcomes of the investigation confirmed the potential thrombolytic, antiarthritic, anthelmintic, and insecticidal activities of the different extracts of H. fomes, and hence, advanced studies on the isolation and identification of active phytocompounds are highly needed for new drug development.

3.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 33-41, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809304

RESUMO

Excessive use of refined flour, solid fats, and sugar in preparing baked products are considered to be unhealthy and is intricately linked with the development of lifestyle diseases. Replacing refined flour with whole wheat flour and solid fats with cold-pressed oil serves as an alternate option. The study was aimed at evaluating the physicochemical properties, nutrient composition, sensory attributes, and shelf life of cupcakes enriched using pomegranate seed oil (PSO). Vanilla and chocolate cupcake variants were prepared using 25 and 50% of PSO. A sensory panel consisting of 30 semi-trained participants was selected for evaluating the formulated products using a five-point hedonic scale. Nutrient content was estimated using standard techniques. The stability of the formulated product was determined by evaluating the physicochemical traits and microbial growth on the 0th, 4th, and 7th day. Mean scores of the sensorial analysis showed that the incorporation of PSO in cupcakes was highly accepted by the panel members. Chocolate cupcake containing 50% of PSO was found to be the most preferred product (3.53±0.94), followed by vanilla cupcake containing 25% of PSO (3.4±0.62). The moisture, protein, and fat content of chocolate cupcakes containing 25% of PSO were high. Cupcakes prepared with PSO can be stored for four days at room temperature. GC-MS analysis showed the presence of punicic acid, oleic acid, tocopherols, campesterol, sitosterols, stigmasterol, and α-tocopheryl acetate as pre-dominant fatty acid in unheated and heated PSO. In conclusion, cupcakes prepared using PSO showed acceptable physicochemical qualities and sensory properties which indicated its successful consumption by people affected with metabolic disorders.


Assuntos
Análise de Alimentos , Qualidade dos Alimentos , Óleos de Plantas , Punica granatum , Ácidos Graxos/análise , Ácidos Graxos/química , Microbiologia de Alimentos , Humanos , Óleos de Plantas/química , Punica granatum/química , Sementes , Edulcorantes , Adulto Jovem
4.
Curr Pharm Des ; 28(12): 969-980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796443

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders. OBJECTIVE: The objectives of the study are to exploit the anti-HIV bioactive compounds against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through molecular docking studies and to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of potential compounds. METHODS: Molecular docking was performed to study the interaction of ligands with the target sites of RdRp protein (PDB: 6M71) using AutoDock Vina. The ADMET properties of potential compounds were predicted using the pkCSM platform. RESULTS: A total of 151 phytochemicals derived from the medicinal plants with recognized antiviral activity and 18 anti-HIV drugs were virtually screened against COVID-19 viral RdRp to identify putative inhibitors that facilitate the development of potential anti-COVID-19 drug candidates. The computational studies identified 34 compounds and three drugs inhibiting viral RdRp with binding energies ranging from -10.2 to -8.5 kcal/mol. Among them, five compounds, namely Michellamine B, Quercetin 3-O-(2'',6''-digalloyl)-beta-Dgalactopyranoside, Corilagin, Hypericin, and 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose residues, bound efficiently with the binding site of RdRp. Besides, Lopinavir, Maraviroc, and Remdesivir drugs also inhibited SARS-CoV-2 polymerase. In addition, the ADMET properties of top potential compounds were also predicted in comparison to the drugs. CONCLUSION: The present study suggested that these potential drug candidates can be further subjected to in vitro and in vivo studies that may help develop effective anti-COVID-19 drugs.


Assuntos
Fármacos Anti-HIV , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , Humanos , Simulação de Acoplamento Molecular , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2
5.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 439-450, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818224

RESUMO

Laccase producing fungus Pleurotus floridanus was isolated from Siruvani forest, Tamil Nadu, India. The potential of P. floridanus to produce laccase by using various lignocellulosic substrates was screened under submerged fermentation. Laccase production in the presence of lignocellulosic substrates such as rice, wheat and maize bran as a sole source of carbon as well as an additional supplement was examined. Laccase activity of P. floridanus using varied substrates was observed in the order of rice bran > wheat bran > maize bran. The isolate showed maximum laccase activity of 13.29±0.01 U/mL using rice bran as a carbon source within 11 days. This was 18 fold higher than the control media that lacks lignocellulosic substrates. The diclofenac tolerance was assessed in solid media at various concentrations and the results showed that the mycelia growth is not significantly affected by the drug. Finally, the laccase mediated degradation of diclofenac at a concentration of 10 mg/L showed 98% degradation in 2 h. The phytotoxicity of the crude laccase treated diclofenac was lower than the untreated diclofenac. In conclusion, findings suggested direct application of crude laccase produced from P. floridanus using agro-residues as ideal substrate for environmental applications.


Assuntos
Lacase , Pleurotus , Biotransformação , Carbono , Diclofenaco/toxicidade , Índia , Lacase/metabolismo , Pleurotus/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35832521

RESUMO

Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.

7.
Biomed Res Int ; 2022: 5445291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707379

RESUMO

Plants generally secrete secondary metabolites in response to stress. These secondary metabolites are very useful for humankind as they possess a wide range of therapeutic activities. Secondary metabolites produced by plants include alkaloids, flavonoids, terpenoids, and steroids. Flavonoids are one of the classes of secondary metabolites of plants found mainly in edible plant parts such as fruits, vegetables, stems, grains, and bark. They are synthesized by the phenylpropanoid pathway. Flavonoids possess antibacterial, antiviral, antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Due to their various therapeutic applications, various pharmaceutical companies have exploited different plants for the production of flavonoids. To overcome this situation, various biotechnological strategies have been incorporated to improve the production of different types of flavonoids. In this review, we have highlighted the various types of flavonoids, their biosynthesis, properties, and different strategies to enhance the production of flavonoids.


Assuntos
Alcaloides , Plantas Medicinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides/metabolismo , Flavonoides/uso terapêutico , Plantas Medicinais/metabolismo , Terpenos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35668781

RESUMO

Lactobacillus (LAB) genera are considered important functional food but are found to have a short shelf life. In this study, two LAB, Lactobacillus plantarum (Lp) and Lactobacillus rhamnosus (Lr), were isolated from sheep's milk, and whole-genome sequencing was carried out by using 16s rRNA Illumina Nextseq, the Netherlands. The LAB were encapsulated by the lyophilisation technique using different lyoprotective pharmaceutical excipients. This process was carried out using a freeze dryer (U-TECH, Star Scientific Instruments, India). Shelf-life determination was carried out by a 12-month study using the viability survival factor (Vsf). The in vitro cell adhesion technique was carried out by using the red snapper fish along with autoaggregation and cell surface hydrophobicity as vital probiotic properties. It was observed that Lp has a significantly higher (P < 0.001) Vsf of 7.2, while Lr has a Vsf of 7 (P < 0.05) when both are encapsulated with 10% maltodextrin + 5% sucrose kept at 4°C for 12 months. The result demonstrated that Lp had significantly high (P < 0.05) cell adhesion, 96% ± 1.2 autoaggregation, and 6% cell surface hydrophobicity as compared to Lr. Moreover, this study demonstrated that lyophilised LAB with lyoprotective excipients enhances shelf life without any changes in probiotic properties when kept at 4°C exhibiting all its probiotic properties.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35668788

RESUMO

Mobile phones have become an indispensable part of human lives for communication, education, and entertainment activities. This study aims to evaluate the diversity pattern of bacterial contaminants on mobiles and to check antibiotic resistance profiles in 105 samples. The study revealed a contamination of 51% in men and 49% in women, the highest in the 21- to 30-year age group, evidencing the extreme use of mobiles by teenagers. The study observed Gram-negative bacteria (63%) versus Gram-positive bacteria (37%). Overall, Gram-negative bacterial isolates showed the highest sensitivity to antibiotic nitrofurantoin (90%) and the lowest in ampicillin (35%). Gram positive has highest incidence of sensitivity towards tigecycline (100%) and lowest in cefoxitin (20%). ESßL producers were found to be 21.0% and highest being in Klebsiella oxytoca (35%) followed by Klebsiella pneumonia (31%). Staphylococcus pseudintermedius and Staphylococcus capitis have been identified on the mobile phones for the very first time. Interestingly, some soil microbes were also isolated and unfortunately found to have some antibiotic resistance like Raoultella ornithinolytica and Sphingomonas paucimobilis. The results revealed that mobiles were contaminated with multidrug-resistant (MDR) pathogens, and this study also showed that few of the saprophytic soil strains have antibiotic resistance, which can be an alarming situation that needs to be addressed.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35600963

RESUMO

For the treatment and maintenance of postprandial blood glucose increases (i.e., diabetes mellitus), alpha (α)-amylase is a well-known therapeutic target. In this paper, we report an initial exploration of the work, i.e., in vitro alpha-amylase activity of the hydroalcoholic polyherbal extract of the selected plants. After drying, the plant material is ground individually, and at least 100 gm of the crude powder is prepared from each plant. 100 gm of each plant was combined, and a total of 500 gm of the crude powder (Ichnocarpus frutescens (100 gm) + Ficus dalhousie (100 gm) + Crateva magna (100 gm) + Alpinia galangal (100 gm) + Swertia chirata (100 gm)) was prepared to carry out the extraction. This obtained extract was subjected to preliminary phytochemical screening and in vitro alpha-amylase activity. At 16 mg/mL, acarbose displayed 78.40 ± 0.36% inhibition, whereas the extract exhibited 72.96 ± 0.70% inhibition, which is significantly comparable. The IC50 value of acarbose was 12.9 ± 1.12, whereas the extract exhibited 13.31 ± 1.12 mg/mL. The extract possesses numerous classes of chemicals such as alkaloids, glycosides, tannins, polyphenols, and terpenoids, which can contribute to the antidiabetic activity through alpha-amylase inhibition. This was an initial exploration of the work as a proof of concept for the development of polyherbal tea bag formulation for the treatment of diabetes. In the future, we are aiming to investigate the effectiveness of polyherbal tea bags in the treatment of diabetes using more in vitro and in vivo models. From the present investigation, we have concluded that this extract can be used for the treatment of diabetes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35571735

RESUMO

Population of the world run into several health-related emergencies among mankind and humans as it creates a challenge for the evolution of novel drug discoveries. One such can be the emergence of multidrug-resistant (MDR) strains in both hospital and community settings, which have been due to an inappropriate use and inadequate control of antibiotics that has led to the foremost human health concerns with a high impact on the global economy. So far, there has been application of two strategies for the development of anti-infective agents either by classical antibiotics that have been derived for their synthetic analogs with increased efficacy or screening natural compounds along with the synthetic compound libraries for the antimicrobial activities. However, need for newer treatment options for infectious diseases has led research to develop new generation of antimicrobial activity to further lessen the spread of antibiotic resistance. Currently, the principles aim to find novel mode of actions or products to target the specific sites and virulence factors in pathogens by a series of better understanding of physiology and molecular aspects of the microbial resistance, mechanism of infection process, and gene-pathogenicity relationship. The design various novel strategies tends to provide us a path for the development of various antimicrobial therapies that intends to have a broader and wider antimicrobial spectrum that helps to combat MDR strains worldwide. The development of antimicrobial peptides, metabolites derived from plants, microbes, phage-based antimicrobial agents, use of metal nanoparticles, and role of CRISPR have led to an exceptional strategies in designing and developing the next-generation antimicrobials. These novel strategies might help to combat the seriousness of the infection rates and control the health crisis system.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35280505

RESUMO

This work elucidates the idea of finding probable critical genes linked to breast adenocarcinoma. In this study, the GEO database gene expression profile data set (GSE70951) was retrieved to look for genes that were expressed variably across breast adenocarcinoma samples and healthy tissue samples. The genes were confirmed to be part of the PPI network for breast cancer pathogenesis and prognosis. In Cytoscape, the CytoHubba module was used to discover the hub genes. For correlation analysis, the predictive biomarker of these hub genes, as well as GEPIA, was used. A total of 155 (85 upregulated genes and 70 downregulated genes) were identified. By integrating the PPI and CytoHubba data, the major key/hub genes were selected from the results. The KM plotter is employed to find the prognosis of those major pivot genes, and the outcome shows worse prognosis in breast adenocarcinoma patients. Further experimental validation will show the predicted expression levels of those hub genes. The overall result of our study gives the consequences for the identification of a critical gene to ease the molecular targeting therapy for breast adenocarcinoma. It could be used as a prognostic biomarker and could lead to therapy options for breast adenocarcinoma.

13.
Int J Nanomedicine ; 17: 901-907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250266

RESUMO

INTRODUCTION: Cancer disease is known due to its unregulated proliferation of cells that have evolved from the body's regular cells. The disease develops as a result of epigenetic and genetic modifications, tumor suppressor gene inactivation, and oncogene activation. The present work describes an environmentally benign approach for the synthesis of manganese oxide nanoparticles (MnO2 NPs) using Gmelina arborea fruit extract (GAE) in an aqueous medium. METHODS: The study evaluated the formation of MnO2 NPs and their anticancer efficacy against MCF-7 breast cancer cell line. RESULTS: The formation of MnO2 NPs was confirmed through powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared MnO2 NPs was evident from XRD pattern. The morphology of the material was studied using SEM analysis, which suggested a rod-like nature with an average diameter of 50 nm. Further, the TEM and HR-TEM images confirmed the rod shape of the as-prepared MnO2 NPs with an interplanar distance of 0.271 nm. In addition, the concentric rings from selected area electron diffraction (SAED) analysis show the crystalline nature of the as-prepared material, which further supports the obtained XRD pattern. The anticancer efficacy of MnO2 NPs was evaluated against MCF-7 breast cancer cell line, which showed up to 96% inhibition of the cells at 400 µg/mL concentration. CONCLUSION: Bio-conjugation of MnO2 NPs can provide enough scope for the therapeutic use of Gmelina arborea, assuming appropriate mechanistic evaluations are conducted.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanotubos , Neoplasias da Mama/tratamento farmacológico , Feminino , Frutas , Humanos , Células MCF-7 , Compostos de Manganês , Nanopartículas Metálicas/química , Óxidos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
Pak J Pharm Sci ; 35(1(Supplementary)): 323-333, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228194

RESUMO

Present study investigate the in-vitro antibacterial and antifungal potential of Typha elephantina leaves aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T. Emth) at different dosages against selected bacteria and fungi using dis diffusion method and Potato Dextrose Agar method. The study was also proceeded in- vivo against one strain of fungi (Aspergillus niger) using aqueous (T. Eaq) extract only. In-vitro study showed that Citrobacter freundii was highly sensitive while Salmonella typhimurium was the least among all. The antifungal activity was dose dependent and differs according to the fungal strain. Aspergillus niger was highly sensitive in order of aqueous extract (T. Eaq), ethanolic extract (T. Eeth) and methanolic extract (T.Emth), followed by Alterneria solani, Candida albicans and Aspergillus ustus. The in-vivo antifungal study was carried using Cyprinus carpio which were first infected with Aspergillus niger and then treated with (T. Eaq) at different doses. During in-vivo study various hematobiochemicl parameters and bio-accumulative stress of some heavy metals were assessed. Highly significant (P<0.05) remedial effects were observed at day 21st of treatment with extract at 100mg/ kg body weight. Differential accumulation was found i.e in skin the accumulation was highest followed by intestine gills and muscles tissues. Liver showed least accumulation.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergilose/veterinária , Extratos Vegetais/farmacologia , Folhas de Planta/química , Typhaceae/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Antifúngicos/química , Aspergilose/tratamento farmacológico , Bactérias/efeitos dos fármacos , Carpas , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
15.
Life (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34833054

RESUMO

BACKGROUND AND AIM: The poultry meat and its products are considered ideal media for bacterial growth and spoilage, as they are highly nutritive with a favorable pH. The food industry has focused its attention on a great diversity of plant species as food preservatives. The aim of this study was to investigate the presence of Staphylococcus aureus, Escherichia coli O157: H7, and Klebsiella pneumonia in food samples and to evaluate of the antibacterial activity of some medicinal plant extracts against these bacteria. METHODS: Raw and processed meat samples (n = 60) were collected from abattoirs and local markets. S. aureus, E. coli O157: H7, and K. pneumonia were isolated, identified by phenotypic methods, and then confirmed by 16S rRNA gene sequencing. The antibacterial activity and spectrum of essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram was determined against the isolated strains in this study by microbial count and well-diffusion techniques. RESULTS: A total of 33 isolates have been identified as S. aureus, 30 isolates were identified as E. coli O157: H7, and 15 isolates were identified as K. pneumonia. S. aureus, E. coli O157: H7, and K. pneumonia could be detected in both fresh and processed food with higher prevalence in the processed meat. There was a significant decrease in microbial count in treated samples either with the spices powder or essential oils of the tested medicinal plants compared to control samples during storage time period. Furthermore, while the microbial count increased in the control samples, the microbial count decreased to reach zero in almost all treated samples with essential oils after 15 days of storage. CONCLUSION: S. aureus, E. coli O157: H7, and K. pneumonia are associated with food from animal sources, in either fresh or processed meat samples. The prevalence of them was higher in the processed meat than in fresh meat. The essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram have an in vitro wide spectrum antibacterial activity with the highest antibacterial activity for the black seeds.

16.
Pharmaceutics ; 13(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34683954

RESUMO

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.

17.
Drug Discov Today ; 26(12): 2881-2888, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34332094

RESUMO

Alzheimer's disease (AD) is an irreversible dementia state with characteristic clinical manifestations, including declining cognitive skills and loss of memory, which particularly affects the older population. Despite significant efforts in the field of nano-based drug delivery, there have been few successes achieved in the design of a rational drug therapy. Nanoemulsions (NEs) have potential for the delivery of AD therapeutics owing to their capability for brain drug delivery. Still, there is a long way to go before such therapeutics become a reality in the clinic. In this review, we highlight the preclinical assessment of NEs for AD and discuss the regulatory constraints to their clinical acceptance.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas , Idoso , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Avaliação Pré-Clínica de Medicamentos/métodos , Emulsões , Humanos , Distribuição Tecidual
18.
Medicina (Kaunas) ; 57(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673004

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic and is posing a serious challenge to mankind. As per the current scenario, there is an urgent need for antiviral that could act as a protective and therapeutic against SARS-CoV-2. Previous studies have shown that SARS-CoV-2 is much similar to the SARS-CoV bat that occurred in 2002-03. Since it is a zoonotic virus, the exact source is still unknown, but it is believed bats may be the primary reservoir of SARS-CoV-2 through which it has been transferred to humans. In this review, we have tried to summarize some of the approaches that could be effective against SARS-CoV-2. Firstly, plants or plant-based products have been effective against different viral diseases, and secondly, plants or plant-based natural products have the minimum adverse effect. We have also highlighted a few vitamins and minerals that could be beneficial against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Nutrientes/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Viroses/tratamento farmacológico , Animais , Quirópteros/virologia , Humanos
19.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011457

RESUMO

The drugs used to treat cancer not only kill fast-growing cancer cells, but also kill or slow the growth of healthy cells, causing systemic toxicities that lead to altered functioning of normal cells. Most chemotherapeutic agents have serious toxicities associated with their use, necessitating extreme caution and attention. There is a growing interest in herbal remedies because of their pharmacological activities, minimal side effects, and low cost. Thymoquinone, a major component of the volatile oil of Nigella sativa Linn, also known as black cumin or black seeds, is commonly used in Middle Eastern countries as a condiment. It is also utilized for medicinal purposes and possesses antidiabetic, anti-cancer, anti-inflammatory, hepatoprotective, anti-microbial, immunomodulatory, and antioxidant properties. This review attempts to compile the published literature demonstrating thymoquinone's protective effect against chemotherapeutic drug-induced toxicities.


Assuntos
Antineoplásicos/efeitos adversos , Benzoquinonas/química , Benzoquinonas/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Nigella sativa/química , Óleos Voláteis/química , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
20.
Antibiotics (Basel) ; 9(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585887

RESUMO

Plants have been used since ancient times to cure certain infectious diseases, and some of them are now standard treatments for several diseases. Due to the side effects and resistance of pathogenic microorganisms to antibiotics and most drugs on the market, a great deal of attention has been paid to extracts and biologically active compounds isolated from plant species used in herbal medicine. Artemisia absinthium is an important perennial shrubby plant that has been widely used for the treatment of several ailments. Traditionally, A. absinthium has always been of pharmaceutical and botanical importance and used to manage several disorders including hepatocyte enlargement, hepatitis, gastritis, jaundice, wound healing, splenomegaly, dyspepsia, indigestion, flatulence, gastric pain, anemia, and anorexia. It has also been documented to possess antioxidant, antifungal, antimicrobial, anthelmintic, anti-ulcer, anticarcinogenic, hepatoprotective, neuroprotective, antidepressant, analgesic, immunomodulatory, and cytotoxic activity. Long-term use of A. absinthium essential oil may cause toxic and mental disorders in humans with clinical manifestations including convulsions, sleeplessness, and hallucinations. Combination chemotherapies of artemisia extract or its isolated active constituents with the currently available antibabesial or anti-malarial drugs are now documented to relieve malaria and piroplasmosis infections. The current review examines the phytoconstituents, toxic and biological activities of A. absinthium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA