Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403288

RESUMO

The Mast/Stem cell growth factor receptor Kit (c-Kit), a Proto-oncogene c-Kit, is a tyrosine-protein kinase involved in cell differentiation, proliferation, migration, and survival. Its role in developing certain cancers, particularly gastrointestinal stromal tumors (GISTs) and acute myeloid leukemia (AML), makes it an attractive therapeutic target. Several small molecule inhibitors targeting c-Kit have been developed and approved for clinical use. Recent studies have focused on identifying and optimizing natural compounds as c-Kit inhibitors employing virtual screening. Still, drug resistance, off-target side effects, and variability in patient response remain significant challenges. From this perspective, phytochemicals could be an important resource for discovering novel c-Kit inhibitors with less toxicity, improved efficacy, and high specificity. This study aimed to uncover possible c-Kit inhibitors by utilizing a structure-based virtual screening of active phytoconstituents from Indian medicinal plants. Through the screening stages, two promising candidates, Anilinonaphthalene and Licoflavonol, were chosen based on their drug-like features and ability to bind to c-Kit. These chosen candidates were subjected to all-atom molecular dynamics (MD) simulations to evaluate their stability and interaction with c-Kit. The selected compounds Anilinonaphthalene from Daucus carota and Licoflavonol from Glycyrrhiza glabra showed their potential to act as selective binding partners of c-Kit. Our results suggest that the identified phytoconstituents could serve as a starting point to develop novel c-Kit inhibitors for developing new and effective therapies against multiple cancers, including GISTs and AML. The use of virtual screening and MD simulations provides a rational approach to discovering potential drug candidates from natural sources.Communicated by Ramaswamy H. Sarma.

2.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299156

RESUMO

The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new area of study that encompasses the development and discovery of new agents for their utilization in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was conducted by using HPLC indicated the presence of numerous compounds in the ME. Through an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using ME and were confirmed via UV-visible spectroscopy at 412 nm of the maximum absorption. The mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD). Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29, and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and 27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial and antioxidant agents.

3.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807549

RESUMO

Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.


Assuntos
Apigenina , Fosfatidilinositol 3-Quinases , Animais , Apigenina/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-35692581

RESUMO

In the present study, we investigated the cytotoxic effects of Athyrium hohenackerianum ethanolic extract (AHEE) on the proliferation of breast, lung, and colon cancer cells. The AHEE was tested for its effect on the progression of the cell cycle, followed by induction of apoptosis determination by flow cytometry. Real-time qRT-PCR was also utilized to observe the initiation of apoptosis. In addition, GC-MS was performed in order to identify the active phytochemicals present in the AHEE. A cytotoxic activity with an IC50 value of 123.90 µg/mL against HCT-116 colon cancer cells was exhibited by AHEE. Following propidium iodide staining, annexin-V/PI, and clonogenic assays, AHEE treatment results in cell arrest in the S phase, causing an increase in the early and late phases of apoptosis and displaying antiproliferative potential, respectively. The morphological alterations were further monitored using acridine orange/ethidium bromide (AO/EB) staining. When compared with the control cells, features of apoptotic cell death, including nuclear fragmentation, in the AHEE-treated cells were noticed. The apoptosis was also confirmed by detecting the increased expression of p53 and caspase-3 along with the downregulation of Bcl-2. GC-MS analysis revealed that trans-linalool oxide, loliolide, phytol, 4,8,12,16-tetramethylheptadecan-4-olide, and gamma-sitosterol were the major phytochemical constituents. Based on these findings, it can be suggested that AHEE causes cellular death via apoptosis, which should be further explored for the identification of active compounds responsible for these observed effects. Therefore, AHEE can be used in the pharmaceutical development of anticancer agents for cancer therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA