Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Med Mushrooms ; 26(3): 41-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505902

RESUMO

The worldwide scientific community is well aware that mosquitoes are the sole agents responsible for transmitting various dreadful diseases and critical illnesses caused by vector-borne pathogens. The primary objective of this current research was to evaluate the effectiveness of methanol extract from Tricholoma equestre mushroom in controlling the early life stages of Culex quinquefasciatus Say, Anopheles stephensi Liston, and Aedes aegypti (Linnaeus in Hasselquist) mosquitoes. The larvae, pupae and eggs of these mosquitoes were exposed to four different concentrations (62.5 to 500 ppm). After 120 h of treatment, the methanol extract of T. equestre exhibited ovicidal activity ranging from 66% to 80% against the eggs of the treated mosquitoes. It also demonstrated promising larvicidal and pupicidal activity with LC50 values of 216-300 and 230-309 ppm against the early life stages of all three mosquito species. Extensive toxicity studies revealed that the methanol extract from T. equestre had no harmful effects on non-target organisms. The suitability index (SI) or predator safety factor (PSF) indicated that the methanol extract did not harm Poecilia reticulata Peters 1859, (predatory fish), Gambusia affinis S. F. Baird & Girard 1853, dragonfly nymph and Diplonychus indicus Venkatesan & Rao 1871 (water-bug). Gas chromatography-mass spectrometry (GCMS) analysis identified key compounds, including 3-butenenitrile, 2-methyl-(25.319%); 1-butanol, 2-nitro-(18.87%) and oxalic acid, heptyl propyl ester (21.82%) which may be responsible for the observed activity. Furthermore, the formulation based on the methanol extract demonstrated similar effectiveness against all treated mosquitoes at the laboratory level and was found to be non-toxic to mosquito predators. This groundbreaking research represents the first confirmation that methanol extract from T. equestre could be effectively employed in preventing mosquito-borne diseases through mosquito population control programs.


Assuntos
Aedes , Agaricales , Anopheles , Culex , Inseticidas , Odonatos , Animais , Metanol/farmacologia , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/química , Extratos Vegetais/química , Larva , Folhas de Planta/química
2.
Int J Med Sci ; 21(4): 593-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464834

RESUMO

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Assuntos
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água , Acetonitrilas , Anti-Inflamatórios
3.
Exp Parasitol ; 258: 108709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301765

RESUMO

Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Ocimum , Odonatos , Óleos Voláteis , Animais , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Ocimum/química , Ocimum sanctum , Mosquitos Vetores , Inseticidas/análise , Larva , Extratos Vegetais/química , Folhas de Planta/química
4.
Saudi Pharm J ; 31(12): 101880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075545

RESUMO

Atherosclerosis is a complex condition that develops at varying rates in multiple configurations and blood vessels. The primary cause of morbidity and mortality worldwide, particularly in the industrialized nations, continues to be atherosclerosis. Ayurveda, Siddha, and Unani systems of medicine, among other traditional medical systems, utilize polyherbal compositions. The treatment of atherosclerosis has been improved with a novel multibotanical combination. In this study, we sought to formulate, characterize, and standardize a polyherbal formulation based on design of experiments (DoE), densitometric studies and to predict for antioxidant activity using molecular docking analysis based on LC- MS identified phytomarkers. In addition we have assessed its cell viability by MTT assay along with Ao/EtBr staining technique and intracellular ROS assay using THP-1 cell lines. Reported findings showed that the HPTLC based quantified components of selected multiherbals has the ability to treat for atherosclerosis. This document could be used to quickly authenticate the formulation as the method optimized was based on CCD design which shows desirability of 0.962 and 0.839. Cell based assays scientifically proves that the formulation was not toxic based on MTT assay along with AO/EtBr staining technique and has excellent antioxidant activities based on intracellular ROS assay using THP-1 cell lines. The observed findings would be crucial for future clinical aspects since the bioactive molecules contained in the extracts may have anticipated effects with other compounds and show a superior therapeutic potential. As a result, this study offers standardized and potentially therapeutic information about effective polyherbal formulation for atherosclerosis.

5.
Acta Trop ; 232: 106489, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487294

RESUMO

In this study Pergularia daemia unripe fruits were used to synthesize zinc oxide nanoparticles (Pd-ZnONPs). UV-vis Spectroscopy detected the production of ZnONPs. XRD, FTIR, SEM, and TEM studies were used to characterize the synthesized Pd-ZnONPs. Aedes aegypti (Ae. aegypti) third instar larvae were analyzed to diverse concentrations of Pd-unripe fruit extract and Pd-ZnONPs for 24 hours to assess the larvicidal effect. Mortality was also detected in Ae. aegypti larvae under laboratory conditions, with corresponding LC50 and LC90 values of 11.11 and 21.20 µg/ml respectively. As a result of this study, the levels of total proteins, esterases, acetylcholine esterase, and phosphatase enzymes in the third instar larvae of Ae. aegypti were significantly lower than the control. These findings suggest that Pd-ZnONPs could be used to suppress mosquito larval populations.


Assuntos
Aedes , Inseticidas , Nanopartículas Metálicas , Infecção por Zika virus , Zika virus , Óxido de Zinco , Animais , Frutas , Inseticidas/química , Inseticidas/farmacologia , Larva , Nanopartículas Metálicas/química , Mosquitos Vetores , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Óxido de Zinco/análise , Óxido de Zinco/farmacologia
6.
Saudi J Biol Sci ; 28(1): 302-309, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424310

RESUMO

Urinary tract infections are second most important diseases worldwide due to the increased amount of antibiotic resistant microbes. Among the Gram negative bacteria, P. mirabilis is the dominant biofilm producer in urinary tract infections next to E. coli. Biofilm is a process that produced self-matrix of more virulence pathogens on colloidal surfaces. Based on the above fact, this study was concentrated to inhibit the P. mirabilis biofilm formation by various in-vitro experiments. In the current study, the anti-biofilm effect of essential oils was recovered from the medicinal plant of Solanum nigrum, and confirmed the available essential oils by liquid chromatography-mass spectroscopy analysis. The excellent anti-microbial activity and minimum biofilm inhibition concentration of the essential oils against P. mirabilis was indicated at 200 µg/mL. The absence of viability and altered exopolysaccharide structure of treated cells were showed by biofilm metabolic assay and phenol-sulphuric acid method. The fluorescence differentiation of P. mirabilis treated cells was showed with more damages by confocal laser scanning electron microscope. Further, more morphological changes of essential oils treated cells were differentiated from normal cells by scanning electron microscope. Altogether, the results were reported that the S. nigrum essential oils have anti-biofilm ability.

7.
Saudi J Biol Sci ; 27(10): 2790-2797, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32994738

RESUMO

Exotic woody weed plants are a very serious threat to seed dispersed by ungulate in the tropical forest of Asia. The ungulates in Point Calimere Wildlife Sanctuary (PCWS) are a significant role in native indigenous seed dispersal. The exotic woody weed tree Prosopis juliflora prevalence distributed in the PCWS and they might potentially alter the native medicinal plant species. In the present investigation, we have assessed the seed dispersal by ungulates in PCWS from January to March 2017. Four different ungulate species were selected to understand their seed dispersal rate of different plant species in selected sanctuary. This investigation was planned to confirm the seed dispersal by ungulates of blackbuck, spotted deer, wild boar and feral horse. Among the four different ungulates tested, the maximum numbers of pellets collected from blackbuck and no seed found in their pellets. The low quantities of pellets were collected from wild boar and this study has recorded medium-sized ungulates which dispersed variety of plant. However, the dispersal of the seed of medicinal plants were not considerably high and relatively moderate percentage of seeds dispersal occurred in medium-sized ungulates like wild boar and spotted deer. P. juliflora had 100% seed germination rate were observed from the faecal samples of wild boar and feral horse. The control seed achieved maximum seedling rate than the ungulates seeds.

8.
Saudi J Biol Sci ; 27(10): 2853-2862, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32994746

RESUMO

Recent years Klebsiella pneumoniae (K. pneumoniae) biofilm formation (BF) is emerging thread worldwide. For tackling this problem, we have chosen Hibiscus rosa-. pneumoniae. The HPLC purified essential oils (EOs sinensis (H. rosa-sinensis) (HRS) to inhibit the BF K) of H. rosa-sinensis was performed against BF K. pneumoniae and showed concentration dependent biofilm inhibition. At the MBIC of EOs (90 µg/ml), the biofilm inhibition was showed at 92% against selected BF K. Pneumoniae. The biofilm metabolic assay, exopolysaccharide quantification and hydrophobicity index variation results exhibited with 88%, 92% and 89% reduction at 90 µg/mL was observed respectively. In addition, the morphological modification of MBIC treated K. pneumoniae was clearly viewed by scanning electron microscope (SEM). Overall, all the invitro experiments result were confirmed that the MBIC of H. rosa-sinensis EOs was very effective against BF K. pneumonia.

9.
Mater Sci Eng C Mater Biol Appl ; 114: 111024, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994001

RESUMO

In this study, silver nanoparticles (Ag NPs) was eco-friendly synthesized using purified flavonoid rich content of Morinda citrifolia (M. citrifolia) extract. The synthesized Ag NPs was exhibited at 420 nm in UV-spectrometer, and surface morphology with available chemical composition, shape and size of the Ag NPs were confirmed by X-ray diffraction (XRD) variation, scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) and transmission electron microscope (TEM). In addition, the excellent phytochemicals and anti-oxidant activity of the Ag NPs were confirmed by total anti-oxidant and DPPH free radical scavenging assays. Further, the concentration dependent inhibition of synthesized Ag NPs against biofilm forming Staphylococcus aureus (S. aureus) was confirmed by minimum inhibition concentration (MIC). The growth cells were arrested in the log phase of the culture and detected by flow cytometry analysis. In addition, the bacterial viability, exopolysaccharide degradation, intracellular membrane damage, matured biofilm inhibition, architectural damage and morphological alteration were confirmed by confocal laser scanning electron microscope (CLSM) and SEM. Furthermore, the synthesized Ag NPs reacted with methylene blue (MB) dye molecules has 100% degradation at an irradiation time of 140 min. Conclusively, the eco-friendly synthesized Ag NPs has excellent anti-oxidant, anti-bacterial through intracellular membrane damage, cell cycle arrest and methylene blue dye removal.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Staphylococcus saprophyticus , Difração de Raios X
10.
Microb Pathog ; 143: 104138, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32173495

RESUMO

Mushrooms have an important role in sustainability since they have long been used as valuable food source and traditional medicine around the world. Regrettably, they are among the most rigorously affected populations, along with several plants and animals, due to the destructive activities of mankind. Thus the authentication and conservation of mushroom species are constantly needed to exploit the remarkable potential in them. In this perspective, an attempt has been made to identify and assess the biological attributes of psychedelic mushrooms collected from Kodaikanal, Tamil Nadu, India. The macromorphological features of the psychedelic mushroom DPT1 helped its presumptive identification and the molecular characters depicted by DNA marker revealed its close relationship with the genus Psilocybe. Accordingly, the psychedelic mushroom was identified as Psilocybe cubensis DPT1 and its crude ethyl acetate extract on analysis revealed the occurrence of phytoconstituents like alkaloids, flavonoids, tannins, saponins and carbohydrates. Moreover, it exhibited 80% larvicidal activity against Culex quinquefasciatus mosquito at 800 ppm concentration and an array of antibacterial effects with utmost susceptibility of Proteus vulgaris, and the identification of bioactive compounds by different analytical techniques substantiate that the bioactivities might be due to the presence of phytochemicals. The results of the study indicated that the extract of P. cubensis DPT1 having notable antibacterial and mosquito larvicidal efficacies which could be probed further for the isolation of medicinally important as well as bio-control compounds.


Assuntos
Antibacterianos/farmacologia , Culex , Inseticidas/farmacologia , Psilocybe/química , Animais , DNA Fúngico/genética , Cromatografia Gasosa-Espectrometria de Massas , Larva , Testes de Sensibilidade Microbiana , Filogenia , Proteus vulgaris/efeitos dos fármacos , Psilocybe/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
11.
Microb Pathog ; 140: 103955, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899325

RESUMO

Eleusine coracana (Finger millet) has high nutritional value with numerous health benefits and is of low cost. Isolation of beta-glucan (ßG) from E. coracana (Ec-ßG) has gained increasing research attention. UV-vis spectroscopy used to measure the surface plasmon resonance at 361 nm to confirm the presence of polysaccharides (glucan molecules) in Ec-ßG. X-ray diffraction analysis of Ec-ßG displayed a crystalline nature and confirmed the presence of the ßG molecule. Further, the bioactive compounds of Ec-ßG were screened using gas chromatography-mass spectrometry. The antibacterial activity of Ec-ßG against both Gram-positive (Lysinibacillus fusiformis, Enterococcus faecalis) and Gram-negative (Proteus vulgaris, Shigella sonnei) bacteria were assessed through minimum inhibitory concentrations <70 µg/ml of Ec-ßG. In addition, the antibiofilm activity and bacterial viability of Ec-ßG at 100 µg/ml was confirmed by light and confocal laser scanning microscopy. Furthermore, Ec-ßG inhibits α-amylase and α-glucosidase at an IC50 -value of 1.23 and 1.42 µg/ml, respectively. Superoxide anion scavenging activity at IC50-1.4 µg/ml and DPPH radical scavenging activity at IC50-1.2 µg/ml showed that Ec-ßG had potential antioxidant property. The in vitro hemolysis assay for biocompatibility of Ec-ßG at 200 µg/ml showed 0.06 ± 0.09%. Therefore, Ec-ßG has the potential to act as a suggestive agent for antibacterial, antidiabetic, and antioxidant activity.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Eleusine/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , beta-Glucanas/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Shigella sonnei/efeitos dos fármacos , Shigella sonnei/fisiologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , beta-Glucanas/química , beta-Glucanas/isolamento & purificação
12.
Microb Pathog ; 139: 103917, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830581

RESUMO

Ammonia is a widespread pollutant that is toxic to living organisms in aquaculture. This study aimed to evaluate the effects of a diet supplemented with beta-glucan from yeast, Saccharomyces cerevisiae (Sc-ßG), on the stress response of Oreochromis mossambicus (Tilapia) to ammonia. Fish were divided into four groups, including a control fed a basal diet and three experimental groups fed diets supplemented with Sc-ßG at 2, 5 and 10 mg/g respectively. After 8 weeks, experimental groups were exposed to ammonia at 100 mg L-1 for 1 week. Growth was measured after the 8-week feeding trial and serum, mucus, and liver tissue were sampled before and after the ammonia challenge. Compared with the control diet, feed supplemented with Sc-ßG at 10 mg/g significantly (p < 0.05) improved growth performance (7.8-9.9 g increase in weight). The cellular immune responses (myeloperoxidase, reactive oxygen species, and reactive nitrogen species), humoral immune responses (alkaline phosphatase, lysozyme, and peroxidase inhibition), and antioxidant response (catalase, superoxide dismutase, and glutathione) were tested in serum, mucus and liver tissue. Compared with the control, these responses were significantly (p < 0.05) enhanced at 10 mg/g supplementation with Sc-ßG. This study demonstrates that Sc-ßG may be applied to induce stress tolerance and improve growth performance in aquaculture.


Assuntos
Amônia/toxicidade , Suplementos Nutricionais/análise , Saccharomyces cerevisiae/química , Tilápia/metabolismo , beta-Glucanas/metabolismo , Amônia/metabolismo , Ração Animal/análise , Animais , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tilápia/crescimento & desenvolvimento , Tilápia/imunologia
13.
Int J Biol Macromol ; 139: 688-696, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376450

RESUMO

ZnO nanoparticles (NPs) synthesized using haemocyanin (Hc-ZnONPs) purified from haemolymph of Penaeus semisulcatus were characterized using various techniques. HR-TEM and SEM microscopy indicated Hc-ZnONPs had a typical size of 20-50 nm and were spherical. The objective of current investigation was to assess the effects of dietary supplementation of Hc-ZnONPs on the development and activity of digestive and metabolic enzymes, as well as the antioxidant levels in P. semisulcatus. Trial basal diets were supplemented with Hc-ZnONPs at rates of 0, 10, 20, 40, 60, and 80 mg kg-1 (dry feed weight) and were fed to P. semisulcatus for 30 d. For 60 mg kg-1 Hc-ZnONPs-supplemented feed, significantly (P < 0.05) enhanced endurance, development, and activity of the digestive enzyme were observed. The enzymatic antioxidants and metabolic enzymes activities in the muscle exhibited no significant changes when 10-60 mg kg-1 Hc-ZnONPs-supplemented feed was fed to P. semisulcatus. Conversely, feeding the P. semisulcatus with 80 mg kg-1 Hc-ZnONPs produced a harmful outcome, with significant increase in the enzymatic antioxidants and metabolic enzymes. Consequently, 80 mg kg-1 Hc-ZnONPs was identified as lethal to P. semisulcatus. Hence, it is proposed that the diet of P. semisulcatus can be supplemented with up to 60 mg kg-1 Hc-ZnONPs for improving the endurance, development and immunity.


Assuntos
Digestão/efeitos dos fármacos , Hemocianinas/química , Nanopartículas Metálicas/química , Penaeidae/fisiologia , Óxido de Zinco/química , Ração Animal , Animais , Antioxidantes/metabolismo , Hemócitos , Hemolinfa/metabolismo , Sistema Imunitário , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Penaeidae/efeitos dos fármacos , Conformação Proteica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
J Photochem Photobiol B ; 197: 111541, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31272033

RESUMO

Here, we report the novel fabrication of ZnO nanoparticles using the Costus igneus leaf extract. Gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy to determine the bioactive components present in the plant extract. The synthesis of Ci-ZnO NPs (C. igneus- coated zinc oxide nanoparticles) was accomplished using a cost-effective and simple technique. Ci-ZnO NPs were specified using UV-visible spectroscopy, FTIR, XRD, and TEM. Ci-ZnO NPs was authenticated by UV-Vis and exhibited a peak at 365 nm. The XRD spectra proved the crystalline character of the Ci-ZnO NPs synthesized as hexagonal wurtzite. The FTIR spectrum illustrated the presence of possible functional groups present in Ci-ZnO NPs. The TEM micrograph showed evidence of the presence of a hexagonal organization with a size of 26.55 nm typical of Ci-ZnO NPs. The α-amylase and α-glucosidase inhibition assays demonstrated antidiabetic activity of Ci-ZnO NPs (74 % and 82 %, respectively), and the DPPH [2,2-diphenyl-1-picrylhydrazyl hydrate] assay demonstrated the antioxidant activity of the nanoparticles (75%) at a concentration of 100 µg/ml. The Ci-ZnO NPs exhibited promising antibacterial and biofilm inhibition activity against the pathogenic bacteria Streptococcus mutans, Lysinibacillus fusiformis, Proteus vulgaris, and Vibrio parahaemolyticus. Additionally, the Ci-ZnO NPs showed biocompatibility with mammalian RBCs with minimum hemolytic activity (0.633 % ±â€¯0.005 %) at a concentration of 200 µg/ml.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Costus/química , Costus/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Química Verde , Hemólise/efeitos dos fármacos , Humanos , Insulina/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
15.
J Photochem Photobiol B ; 192: 55-67, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685584

RESUMO

Arboviral diseases and microbial pathogens resistant to commercially available drugs are on the rise. Herein, a facile microbial-based approach was developed to synthesize selenium nanowires (Se NWs) using microbial exopolymer (MEP) extracted from the Bacillus licheniformis (probiotic bacteria). MEP-Se NWs were characterized using UV-Visible, XRD, FTIR, HR-TEM, FE-SEM and EDX. An UV-Visible peak was detected at 330 nm while XRD spectrum data pointed out the crystalline nature of MEP-Se NWs. FTIR spectrum revealed functional groups with strong absorption peaks in the range 3898.52-477.97 cm-1. FE-SEM and HR-TEM revealed that the obtained structures were nanowires of 10-30 nm diameter. Se presence was confirmed by EDX analysis. MEP-Se NWs at 100 µg/ml highly suppressed the growth of both Gram (-) and Gram (+) bacteria. Further, microscopic analysis evidenced that 75 µg/ml MEP-Se NWs suppressed biofilm formation. Hemolytic assays showed that MEP-Se NWs were moderately cytotoxic. In addition, LC50 values lower than 10 µg/ml were estimated testing MEP-Se NWs on both Aedes aegypti and Culex quinquefasciatus 3rd instar larvae. Morphological and histological techniques were used to elucidate on the damages triggered in mosquito tissues, with special reference to midgut, post-exposure to MEP-Se NWs. Therefore, based on our findings, MEP-Se NWs can be considered for entomological and biomedical applications, with special reference to the management of biofilm forming microbial pathogens and arbovirus mosquito vectors.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nanofios/química , Selênio , Animais , Antibacterianos/farmacologia , Arbovírus , Bacillus licheniformis/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Vetores Genéticos , Larva/efeitos dos fármacos , Mosquitos Vetores
16.
J Trace Elem Med Biol ; 51: 191-203, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30466931

RESUMO

Herein, we reported a method to synthesize selenium nanowires (Cr-SeNWs) relying to purified cysteine-rich antimicrobial peptide crustin in presence of ascorbic acid. Cr-SeNWs were characterized by UV-vis, XRD, FTIR and Raman spectroscopy, as well as SEM, HR-TEM and EDAX. The UV-vis spectroscopy peak was noted at 350 nm. XRD showed the crystalline nature of Cr-SeNWs through diffraction peaks observed 2θ at 12° and 28° corresponding to (020), and (241) lattice planes, respectively. HR-TEM results shed light on the size of Cr-SeNWs, ranging from 17 to 47 nm. Raman spectroscopy and EDAX analysis of Cr-SeNWs showed presence of 57% selenium element. Furthermore, Cr-SeNWs showed higher antimicrobial activity on Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) over Gram-negative ones (Pseudomonas aeruginosa, Escherichia coli). The zone of inhibition was larger on S. aureus (50 µg/ml = 4.0 mm, 75 µg/ml = 7.2 mm) and E. faecalis (50 µg/ml = 3.1 mm, 75 µg/ml = 5.1 mm), over P. aeruginosa (50 µg/ml = 2.1 mm, 75 µg/ml = 4.8 mm), E. coli (50 µg/ml = 1.3 mm, 75 µg/ml = 4.3 mm) bacteria. The antibiofilm activity of Cr-SeNWs was also investigated and biofilm reduction was observed at 75 µg/ml. In addition, Cr-SeNWs were highly effective as larvicides against Zika virus and Japanese encephalitis mosquito vectors, i.e., Culex quinquefasciatus and Culex tritaeniorhynchus, with LC50 values of 4.15 and 4.85 mg/l, respectively. The nanowire toxicity and internalization was investigated through confocal laser scanning microscopy and histological studies. To investigate the potential of Cr-SeNWs for real-world applications, we also evaluated Cr-SeNWs in hemolytic assays, showing no cytotoxicity till 5 mg/ml. Besides, higher antioxidant activity at the concentration at 100 µg/ml was noted, if compared with purified crustin. The strong antioxidant potential of this nanomaterial can be helpful to boost the shelf-life potential of Cr-SeNWs-based pesticides and antimicrobials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Encefalite Japonesa/tratamento farmacológico , Mosquitos Vetores/efeitos dos fármacos , Nanofios/química , Selênio/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Braquiúros , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Selênio/química , Staphylococcus aureus/efeitos dos fármacos
17.
J Trace Elem Med Biol ; 50: 146-153, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262272

RESUMO

To develop novel nanoformulated insecticides and antimicrobials, herein we produced Ag nanoparticles (AgNPs) using the Bauhinia acuminata leaf extract. This unexpensive aqueous extract acted as a capping and reducing agent for the formation of AgNPs. We characterized B. acuminata-synthesized AgNPs by UV-vis and FTIR spectroscopy, XRD and TEM analyses. UV-vis spectroscopy analysis of B. acuminata-synthesized AgNPs showed a peak at 441.5 nm. FTIR shed light on functional groups from the phytoconstituents involved in nanosynthesis. XRD of B. acuminata-synthesized AgNPs suggested a face-centered cubic structure, with a highly crystalline nature. TEM of B. acuminata-synthesized AgNPs revealed mean size of 25 nm, with round shape. AgNPs tested at 60 µg/mL inhibited the growth of 5 bacteria and 3 fungal pathogens. In the insecticidal assays on important mosquito species, LC50 of the aqueous extract of B. acuminata leaves on the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus were 204.07, 226.02, and 249.24 µg/mL, respectively. The B. acuminata-synthesized AgNPs exhibited higher larvicidal efficacy, with LC50 values of 24.59, 27.19, and 30.19 µg/mL, respectively. Therefore, herein we developed a single-step, reliable, inexpensive, and environmentally non-toxic synthesis process to obtain AgNPs with high bioactivity against pathogens and vectors. Given the effective antimicrobial and larvicidal activity, nanoparticles fabricated using plant extracts and extremely low concentrations of trace elements, such as silver, can be exploited for multipurpose activities. Our results pointed out that B. acuminata-synthesized AgNPs have a promising potential in antimicrobial food packaging, as well as a foliar spray to control plant pathogens in the field, and to synergize the efficacy of fungicidal and larvicidal formulations.


Assuntos
Anti-Infecciosos/química , Bauhinia/química , Inseticidas/química , Nanopartículas Metálicas/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Prata/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Photochem Photobiol B ; 181: 70-79, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29510358

RESUMO

Recent research in entomology and parasitology focused on the efficacy of green fabricated nanomaterials as novel insecticides. In this study, we synthesized poly-dispersed and stable silver nanoparticles (AgNPs) using the leaf extract of Holostemma ada-kodien. The nanostructures were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. The efficacy of H. ada-kodien leaf extract and AgNPs in vector control was evaluated against the mosquitoes Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, which act as major vectors of important parasitic and arboviral diseases. AgNPs showed higher toxicity if compared to the H. ada-kodien leaf aqueous extract, LC50 towards larvae of A. stephensi, A. aegypti, and C. quinquefasciatus were 12.18, 13.30, and 14.70 µg/mL, respectively. When the AgNPs were tested on non-target water bugs, Diplonychus indicus, the LC50 value was 623.48 µg/mL. Furthermore, 100 µl/mL of AgNPs achieved significant antimicrobial activity against Bacillus pumilus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris, and Candida albicans. Light and confocal laser scanning microscopy highlighted a major impact of the H. ada-kodien-synthesized AgNPs on the external topography and architecture of microbial biofilms, both on Gram-positive and Gram-negative bacteria. Overall, this study sheds light on the insecticidal and antibiofilm potential of H. ada-kodien-synthesized AgNPs, a potential green resource for the rapid synthesis of polydispersed and highly stable AgNPs.


Assuntos
Aedes/efeitos dos fármacos , Apocynaceae/química , Culex/efeitos dos fármacos , Inseticidas/toxicidade , Nanopartículas Metálicas/química , Prata/química , Aedes/crescimento & desenvolvimento , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Apocynaceae/metabolismo , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Coloides/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Química Verde , Heterópteros/efeitos dos fármacos , Inseticidas/síntese química , Larva/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo
19.
Int J Biol Macromol ; 114: 864-873, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601878

RESUMO

In this study, we purified ß-GBP from hemolymph of Scylla serrata crabs using affinity chromatography. The purified S. serrata ß-GBP (Ss-ß-GBP) had 100kDa molecular mass in the SDS-PAGE. MALDI-TOF/TOF analysis was conducted, revealing that the purified 100kDa protein had 96% similarity with ß-GBP of Astacus leptodactylus. Ss-ß-GBP was characterized using high-performance liquid chromatography (HPLC), X-ray diffraction (XRD) analysis, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, which confirmed the structure of the Ss-ß-GBP. The purified Ss-ß-GBP was functionally analyzed by yeast agglutination and phagocytic reaction assays. Moreover, the PO enhancing ability of Ss-ß-GBP was evidenced through PO activity. Specifically, the antibacterial activity of the Ss-ß-GBP against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria was evaluated by determining its minimum inhibitory concentration (MIC)<60µg/ml for all tested species. Furthermore, the antibiofilm efficacy of Ss-ß-GBP at 50 and 100µg/ml was outlined using light microscopy and confocal laser scanning microscopy (CLSM). Bacterial viability assays also outlined the dose-dependent activity of Ss-ß-GBP based on the ratio of live/dead bacterial cells. The results of this study revealed that crab-borne Ss-ß-GBP might be widely used to suppress the growth of pathogenic bacteria.


Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Braquiúros/química , Proteínas de Transporte/isolamento & purificação , Hemolinfa/química , Lectinas/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Técnicas de Química Analítica , Cromatografia de Afinidade , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Glucanos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lectinas/química , Lectinas/farmacologia , Testes de Sensibilidade Microbiana , Fagocitose/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
20.
Environ Sci Pollut Res Int ; 25(11): 10228-10242, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161865

RESUMO

Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC50 = 10.33 µg/ml), Ae. albopictus (LC50 = 11.32 µg/ml), and Cx. tritaeniorhynchus (LC50 = 12.35 µg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 µg/ml, respectively. In adulticidal assays, LD50 values were 18.66, 20.94, and 22.63 µg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC50 ranging from 684 to 2245 µg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.


Assuntos
Acacia/química , Fabaceae/química , Inseticidas/química , Larva/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Aedes/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Larva/química , Mosquitos Vetores , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA