Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 639: 122966, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37084835

RESUMO

Valsartan (VST) is a poorly soluble antihypertensive drug characterized by its limited dissolution rate and low bioavailability. This study aims to improve VST solubility and dissolution rate via developing liquisolid tablets (LSTs) containing a self-nanoemulsifying drug delivery system (SNEDDS), which is expected to enhance VST bioavailability. This aim was achieved via two designs of experiment. The first was the simplex-lattice design to optimize VST-loaded-SNEDDS using sesame oil, Tween 80, and polyethylene glycol 400. The second was the 32-3-level factorial design to optimize the liquisolid system using the SNEDDS-loaded VST and Neusilin®US2 as a carrier and fumed silica as a coating material. Different excipient ratios (X1) and varioussuper-disintegrants (X2) were also used in developing the optimized VST-LSTs. Thein vitrodissolution of VST from LSTs was compared with the marketed product (Diovan®). Non-compartmental analysis of plasma data after extravascular input with the linear trapezoidal method was used to calculate thepharmacokinetic parameters of the optimized VST-LSTs compared with the marketed tablet in male Wistar rats. The optimized SNEDDS compromised 24.9% sesame oil, 33.3% surfactant, and 41.8% cosurfactant, giving 173.9 nm size and 63.9 mg/ml loading capacity. Also, the SNEDDS-loaded VST tablet revealed good quality attributes with the release of 75% of its content in 5 min and 100% within 15 min. On the other hand, the marketed product took 1 h for the entire drug to be released.Moreover, the maximum plasma concentration (Cmax) of the optimizedVST-LSTwas6585.33 ng/ml within 1 h (Tmax), compared to 2884.67 ng/ml within 2 h of the marketed tablet.The relative bioavailability of the SNEDDS-loaded VST tablet was 213.7% compared to that of the marketed tablet, indicating that this formulation approach could be applied for increasing solubility, dissolution behavior in GIT, and bioavailability of poorly water-soluble drugs.


Assuntos
Nanopartículas , Óleo de Gergelim , Ratos , Animais , Masculino , Valsartana , Disponibilidade Biológica , Ratos Wistar , Emulsões , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Solubilidade , Comprimidos
2.
Drug Deliv ; 29(1): 254-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35014929

RESUMO

Candida albicans is the fungus responsible for oral candidiasis, a prevalent disease. The development of antifungal-based delivery systems has always been a major challenge for researchers. This study was designed to develop a nanostructured lipid carrier (NLC) of sesame oil (SO) loaded with miconazole (MZ) that could overcome the solubility problems of MZ and enhance its antifungal activity against oral candidiasis. In the formulation of this study, SO was used as a component of a liquid lipid that showed an improved antifungal effect of MZ. An optimized MZ-loaded NLC of SO (MZ-SO NLC) was used, based on a central composite design-based experimental design; the particle size, dissolution efficiency, and inhibition zone against oral candidiasis were chosen as dependent variables. A software analysis provided an optimized MZ-SO NLC with a particle size of 92 nm, dissolution efficiency of 88%, and inhibition zone of 29 mm. Concurrently, the ex vivo permeation rate of the sheep buccal mucosa was shown to be significantly (p < .05) higher for MZ-SO NLC (1472 µg/cm2) as compared with a marketed MZ formulation (1215 µg/cm2) and an aqueous MZ suspension (470 µg/cm2). Additionally, an in vivo efficacy study in terms of the ulcer index against C. albicans found a superior result for the optimized MZ-SO NLC (0.5 ± 0.50) in a treated group of animals. Hence, it can be concluded that MZ, through an optimized NLC of SO, can treat candidiasis effectively by inhibiting the growth of C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Miconazol/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Óleo de Gergelim/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipídeos/química , Masculino , Miconazol/administração & dosagem , Miconazol/farmacocinética , Mucosa Bucal , Tamanho da Partícula , Distribuição Aleatória , Ratos , Ovinos , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA