Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Sci Pollut Res Int ; 30(56): 118280-118290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737946

RESUMO

Terminal heat during reproductive stages of wheat (Triticum aestivum L.) limits the productivity of the crop. Magnesium (Mg) is an essential macronutrient that is involved in many physiological and biochemical processes to affect photosynthesis and seed weight. The present study comparatively evaluated Mg applied to soil (80 kg MgSO4·7H2O ha-1) and to plant foliage (4% w/v) in improving wheat performance under terminal heat. Wheat crop was grown in two sets of treatments until the booting stage, and then one set of plants was shifted to a glasshouse (±5 °C) at the booting stage to grow until maturity in comparison to control plants kept under ambient warehouse condition. Heat stress reduced the pollen viability while foliar- and soil-applied Mg improved it by 3% and 6% under heat stress, respectively, compared to the control without Mg treatment. The 100-seed weight, spike length, and biological yield reduced by 39%, 19%, and 50% under heat stress; however, foliar and soil application increased 100-seed weight by 45% and 40%, spike length by 8% and 5%, and biological yield by 35% and 25% under heat stress, respectively. Soil Mg showed maximum SPAD chlorophyll values; however, response was statistically similar to that of foliar Mg as compared to the control without Mg supply. Membrane stability decreased (4%) due to heat stress while foliar and soil treatments improved membrane stability by 8% and 5% compared to that of the control, respectively. Thus, Mg application through soil or plant foliage can be an effective way to reduce negative impacts of terminal heat in wheat by improving pollen viability at anthesis and 100-seed weight that was attributed to increased chlorophyll contents during anthesis.


Assuntos
Magnésio , Triticum , Magnésio/farmacologia , Temperatura , Sementes , Clorofila/farmacologia , Solo/química , Pólen , Fertilização
2.
Plants (Basel) ; 11(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36297706

RESUMO

Intercropping cover crops with trees enhance land productivity and improves the soil's physio-chemical properties while reducing the negative environmental impact. However, there is a lack of quantitative information on the relationships between fine root biomass and available soil nutrients, e.g., nitrogen (N), phosphorus (P), and potassium (K), especially in the rubber-Flemingia macrophylla intercropping system. Therefore, this study was initiated to explore the seasonal variation in fine root biomass and available soil nutrients at different stand ages (12, 15, and 24 years) and management systems, i.e., rubber monoculture (mono) and rubber-Flemingia macrophylla intercropping. In this study, we sampled 900 soil cores over five seasonal intervals, representing one year of biomass. The results showed that the total fine root biomass was greater in 12-year-old rubber monoculture; the same trend was observed in soil nutrients P and K. Furthermore, total fine root biomass had a significant positive correlation with available N (p < 0.001) in rubber monoculture and intercropping systems. Thus, it suggests that fine root growth and accumulation is a function of available soil nutrients. Our results indicate that fine root biomass and soil nutrients (P and K) may be determined by the functional characteristics of dominant tree species rather than collective mixed-species intercropping and are closely linked to forest stand type, topographic and edaphic factors. However, further investigations are needed to understand interspecific and complementary interactions between intercrop species under the rubber-Flemingia macrophylla intercropping system.

3.
Front Plant Sci ; 13: 989504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299792

RESUMO

The increasing contamination of soil with arsenic (As), and salinity has become a menace to food security and human health. The current study investigates the comparative efficacy of plain biochar (BC), and silicon-nanoparticles doped biochar (SBC) for ameliorating the As and salinity-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) and associated human health risks. Quinoa was grown on normal and saline soils (ECe 12.4 dS m-1) contaminated with As (0, 20 mg kg-1) and supplemented with 1% of BC or SBC. The results demonstrated that plant growth, grain yield, chlorophyll contents, and stomatal conductance of quinoa were decreased by 62, 44, 48, and 66%, respectively under the blended stress of As and salinity as compared to control. Contrary to this, the addition of BC to As-contaminated saline soil caused a 31 and 25% increase in plant biomass and grain yield. However, these attributes were increased by 45 and 38% with the addition of SBC. The H2O2 and TBARS contents were enhanced by 5 and 10-fold, respectively under the combined stress of As and salinity. The SBC proved to be more efficient than BC in decreasing oxidative stress through overexpressing of antioxidant enzymes. The activities of superoxide dismutase, peroxidase, and catalase were enhanced by 5.4, 4.6, and 11-fold with the addition of SBC in As-contaminated saline soil. Contamination of grains by As revealed both the non-carcinogenic and carcinogenic risks to human health, however, these effects were minimized with the addition of SBC. As accumulation in grains was decreased by 65-fold and 25-fold, respectively for BC and SBC in addition to As-contaminated saline soil. The addition of SBC to saline soils contaminated with As for quinoa cultivation is an effective approach for decreasing the food chain contamination and improving food security. However, more research is warranted for the field evaluation of the effectiveness of SBC in abating As uptake in other food crops cultivated on As polluted normal and salt-affected soils.

4.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408583

RESUMO

The current study was conducted to examine the in vitro anticancer potential of Cordia dichotoma (bark, leaves, pulp and seed). The plant material was collected from UT of J&K and methodical bioassays were carried out on ten human cancer cell lines (Michigan Cancer Foundation-7 (MCF-7), M.D. Anderson-Metastatic Breast (MDA-MB-231), Neuroblastoma-2a (N2A), SH-SY5Y, U-251, HCT-116, SW-620, A-549, MIA PaCa-2, Panc-1) from five different origins (breast, CNS, colon, lung, pancreas) respectively. Methanolic extracts were produced and fractions were then obtained from the extracts and evaluated for cytotoxicity. Mechanistic assays, HPLC, and GCMS profiling were performed on the highest active fraction. The Sulforhodamine B (SRB) assay determined the in vitro cytotoxicity. The findings revealed that the bark portion had in vitro cytotoxicity against the A-549 human lung cancer cell line. To our knowledge, this is the first study to show that the plant's bark has anticancer properties and induced chromatin condensation, confirmed cell death via ROS generation, and significantly decreased colony formation in A-549 cell line from lung origin in a dose-dependent manner. Furthermore, HPLC and GCMS investigations indicated the presence of a number of bioactive molecules such as gallic acid (144,969.86) uV*sec, caffeic acid (104.26) uV*sec, ferulic acid (472.87) uV*sec, vanillic acid (13,775.39) uV*sec, palmitic acid (18.34%), cis vaccenic acid (28.81%), etc. and one of the compounds was reported for the first time from the bark. As a result of its promising efficacy, it may become an essential cancer chemopreventive or chemotherapeutic medication for patients with lung carcinoma.


Assuntos
Cordia , Neoplasias , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cordia/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
5.
Toxics ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448430

RESUMO

Cadmium (Cd) and lead (Pb) contaminated soils have increased recently, resulting in limited crop productivity. The ameliorative role of potassium (K) and silicon (Si) is well established in plants under heavy metals stress; however, their combined role under the co-contamination of Cd and Pb is not well understood. We hypothesized that the synergistic application of K and Si would be more effective than their sole treatment for increasing the Pb and Cd tolerance and phytostabilization potential of quinoa (Chenopodium quinoa Willd.). In the current study, quinoa genotype 'Puno' was exposed to different concentrations of Cd (0, 200 µM), Pb (0, 500 µM) and their combination with or without 10 mM K and 1.0 mM Si supplementation. The results revealed that the combined stress of Cd and Pb was more detrimental than their separate application to plant biomass (66% less than the control), chlorophyll content and stomatal conductance. Higher accumulation of Pb and Cd led to a limited uptake of K and Si in quinoa plants. The supplementation of metal-stressed plants with 10 mM K and 1.0 mM Si, particularly in combination, caused a significant increase in the growth, stomatal conductance and pigment content of plants. The combined stress of Cd and Pb resulted in an overproduction of H2O2 (11-fold) and TBARS (13-fold) and a decrease in membrane stability (59%). Oxidative stress induced by metals was lessened by 8-fold, 9-fold, 7-fold and 11-fold increases in SOD, CAT, APX and POD activities, respectively, under the combined application of K and Si. It is concluded that the exogenous supply of K and Si in combination is very promising for increasing Cd and Pb tolerance and the phytostabilization potential of quinoa.

6.
Environ Sci Pollut Res Int ; 29(9): 13201-13210, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34585357

RESUMO

The productivity of plants is a direct variant of the countless biotic and abiotic stresses to which a plant is exposed in an environment. This study aimed to investigate the capabilities of leguminous plant garden pea (Pisum sativum L.) to resist water deficit conditions in arid and semi-arid areas when applied with varied doses of sludge for growth response. The effect of sludge doses was evaluated on crop yield, antioxidant enzymes, viz., ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and glutathione reductase (GR), and metabolites (ascorbic acid, glutathione, and total protein content). The effective sludge concentrations with respect to seed weight and crop yield were found to be in the following trend: D2 (6.25%)>D3 (12.5%)>D1 (2.5%)>D0 (control) under organic amendment (OA). Conversely, a high dose of the sludge reduced the seed weight and total crop yield. The sludge doses D2 under arid and semi-arid conditions along with organic amendments (OA) significantly enhance the antioxidant enzyme activity, whereas sludge dose D3 with OA ominously regulates the activity of these enzymes. Besides, seeds depicted a considerable increase in ascorbic acid, glutathione, and total protein content in arid and semi-arid conditions upon the application of sludge with OA. Sewage sludge as a source of nutrients indirectly enhances crop yield, antioxidant enzymes, and antioxidant metabolites. Thus, it improves the defense mechanism, reduces abnormal protein glycation, and depletes the susceptibility of protein to proteolysis.


Assuntos
Antioxidantes , Pisum sativum , Ascorbato Peroxidases , Ácido Ascórbico , Glutationa , Esgotos
7.
Plants (Basel) ; 10(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685894

RESUMO

Boron (B) performs physiological functions in higher plants as an essential micronutrient, but its protective role in salt stress is poorly understood. Soybean (Glycine max L.) is planted widely throughout the world, and salinity has adverse effects on its physiology. Here, the role of B (1 mM boric acid) in salt stress was studied by subjecting soybean plants to two levels of salt stress: mild (75 mM NaCl) and severe (150 mM NaCl). Exogenous B relieved oxidative stress by enhancing antioxidant defense system components, such as ascorbate (AsA) levels, AsA/dehydroascorbate ratios, glutathione (GSH) levels, the GSH and glutathione disulfide ratios, and ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase activities. B also enhanced the methylglyoxal detoxification process by upregulation of the components of the glyoxalase system in salt-stressed plants. Overall, B supplementation enhanced antioxidant defense and glyoxalase system components to alleviate oxidative stress and MG toxicity induced by salt stress. B also improved the physiology of salt-affected soybean plants.

8.
Biomolecules ; 11(3)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801090

RESUMO

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•- and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•-, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L-1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


Assuntos
Cádmio/toxicidade , Extratos Vegetais/farmacologia , Silimarina/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
9.
Front Psychiatry ; 12: 577103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643086

RESUMO

Background: This study was designed to investigate Saudis' attitudes toward mental distress and psychotropic medication, attribution of causes, expected side effects, and to analyze participants' expectations toward alternative or complementary medicine using aromatic and medicinal plants, through a survey. Method: The study included 674 participants (citizens and residents in Saudi Arabia) who were randomly contacted via email and social media and gave their consent to complete a questionnaire dealing with 39 items that can be clustered in six parts. Descriptive statistics and Chi-square for cross-tabulation were generated using SPSS. Results: Among the 664 participants, 73.4% believed that there are some positive and negative outcomes of psychotropic medication. Participants (72.0%) think that the most important reason leading to psychological disorders is mainly due to the loss of a relative or beloved person, and 73.9% considered psychic session as one of the possible treatments of psychological disorders. Surprisingly, only 18.8% of the participants agreed that medicinal and aromatic plants could be a possible treatment of the psychological disorder. Participants (82%) consider that physicians are the most trustful and preferred source of information about alternative and complementary medicine.

10.
Plant Physiol Biochem ; 158: 43-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296845

RESUMO

Globally, salinity threatens the agricultural crops productivity by inhibiting plant growth and development through osmotic stress and ionic cytotoxicity. The polygenic nature of salinity offers several pragmatic shotgun approaches to improve salinity tolerance. The present study investigated the potential of glutathione (GSH; 1 mM) as an antioxidant and moringa leaf extract (MLE; 3%) as an organic biostimulant applied in sequence as seed priming and foliar spray on wheat growth, physiology and metabolic adaptation under saline conditions (9.16 dS m-1). Plants without any treatment and water spray (H2O) were considered controls. Salinity induced osmotic stress reduced the plant tissue water status and photosynthetic performance, and perturbed ionic (K+/Na+, Ca2+/Na+, K++Ca2+/Na+) and hormonal (IAA, GA3, zeatin, ABA) homeostasis, consequently affected growth and yield in wheat. Sequenced applied MLE and/or GSH improved osmotic stress tolerance by stabilizing membrane integrity and decreasing electrolyte leakage. These positive results were owed to enhanced endogenous GSH and ascorbate levels. Improved tissue water status was attributed to increased osmotic adjustment, better ionic and hormonal homeostasis contributed to improving photosynthetic efficiency and growth under salinity. Exogenously applied MLE and GSH sequences improved grain yield, which was attributed to the maintenance of green leaf area and delayed senescence associated with an increase in photosynthetic pigments and chlorophyll fluorescence traits. In crux, exogenous applied MLE and/or GSH can be the best physiological strategy to reduce the deleterious effects of salinity and improve physiological and metabolic adaptation in wheat under saline field conditions.


Assuntos
Antioxidantes/farmacologia , Glutationa/farmacologia , Extratos Vegetais/farmacologia , Estresse Salino , Triticum/fisiologia , Adaptação Fisiológica , Moringa/química , Fotossíntese
11.
Plant Physiol Biochem ; 144: 178-186, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31574383

RESUMO

The present investigation describes aluminum-induced changes in the leaves of two buckwheat species using both physiological and biochemical indices. With increasing levels of Al (viz. 100, 200 and 300 µM), the mean length of root, shoot as well as their biomass accumulation decreased linearly with respect to control. Tolerance test of F. kashmirianum revealed that it was more tolerant to Al-stress than F. tataricum as revealed by higher accumulation of Al in its roots without any significant damage. Translocation factor (TF) values of both species were found to be < 1, indicating more Al is restrained in roots. Total chlorophyll showed a non-significant increase in F. tataricum while as decreased in F. kashmirianum at 300 µM concentration besides, the carotenoid content exhibited inclined trend in F. tataricum and showed a concomitant decrease in F. kashmirianum. The anthocyanin level showed a non-significant decline in F. kashmirianum. Exposure to different Al-treatments enhances malondialdehyde (MDA), H2O2 and membrane stability index (MSI) in both species, with increases being greater in F. kashmirianum than F. tataricum as also revealed by DAB-mediated in vivo histo-chemical detection method. The osmolyte level in general were elevated in both buckwheat species however, enhancement was more in F. tataricum than F. kashmirianum. The activities of antioxidant enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), glutathione-S-transferase (GST) were positively correlated with Al-treatment except catalase (CAT) which exhibits a reverse outcome in F. kashmirianum. The present investigation could play an essential role to better understand the detoxification mechanisms of Al in plants.


Assuntos
Alumínio/toxicidade , Fagopyrum/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa Redutase/metabolismo , Peroxidase/metabolismo
12.
Chemosphere ; 216: 595-604, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390590

RESUMO

The effect of lead (Pb)-induced oxidative stress was investigated in Fagopyrum kashmirianum. The seedlings absorbed the Pb readily by showing time (15 and 30 days) and concentration (0, 100, 200 and 300 µM) dependent effects. Pb caused reduction in both root and shoot lengths but its accumulation was more in roots (22.32 mg g-1 DW) than shoots (8.86 mg g-1 DW) at the highest concentration (300 µM) resulting in translocation factor (TF) < 1 at all concentrations. Thus the uptake and translocation of Pb between roots and shoots showed a positive correlation indicating the plant as root accumulator. Amongst the photosynthetic pigments, chlorophyll content showed a decline while the carotenoid and anthocyanin levels were elevated. The fresh mass and biomass showed a non-significant decrease at both the sampling times. The osmolyte and antioxidative enzymes (SOD, CAT, APX. POD, GR and GST) were positively correlated with Pb treatments except proline and CAT, which showed decline in 30-day-old plants. The alleviation of Pb-stress is an indication for existence of strong detoxification mechanism in F. kashmirianum, which suggest that it could be cultivated in Pb-contaminated soils.


Assuntos
Antioxidantes/farmacologia , Fagopyrum/crescimento & desenvolvimento , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
13.
Saudi J Biol Sci ; 25(7): 1393-1401, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30505187

RESUMO

The effects of magnesium (Mg) supplementation on the growth performance, oxidative damage, DNA damage, and photosynthetic pigment synthesis, as well as on the activity level of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase (Rubisco), and antioxidant enzymes were studied in Vicia faba L. plants exposed to heat stress (HS) and non-heat-stress (non-HS) conditions. Seeds were grown in pots containing a 1:1 mixture of sand and peat, with Mg treatments. The treatments consisted of (i) 0 Mg and non-HS (ambient temperature; control); (ii) 50 mM Mg; (iii) HS (38 °C); and (iv) 50 mM Mg and HS (38 °C). HS was imposed by placing potted plants in an incubator at 38 °C for 48 h. Growth attributes, total chlorophyll (Total Chl), and CA, and Rubisco activity decreased in plants subjected to HS, whereas accumulation of organic solutes [proline (Pro) and glycine betaine (GB)]; superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity; DNA damage; electrolyte leakage (EL); and malondialdehyde (MDA) and hydrogen peroxide (H2O2) content all increased. Application of Mg, however, significantly enhanced further proline (Pro), glycinebetaine (GB), SOD, POD, and CAT activity, and decreased DNA damage, EL, and MDA and H2O2 concentrations. These results suggest that adequate supply of Mg is not only essential for plant growth and development, but also improves plant tolerance to HS by suppressing cellular damage induced by reactive oxygen species through the enhancement of the accumulation of Pro and GB, and the actions of antioxidant enzymes.

14.
Ecotoxicol Environ Saf ; 154: 187-196, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29475124

RESUMO

In the crust of earth, silicon (Si) is one of the two major elements. For plant growth and development, importance of Si remains controversial due to the widely differences in ability of plants to take up this element. In this paper, pot experiments were done to study Si roles in improving salt, drought or cadmium (Cd) stress tolerance in wheat. Up to full emergence, all pots were watered at 100% field capacity (FC) every other day with nutrient solution without any treatments. Fifteen days after sowing, pots were divided into four plots, each with 40 pots for no stress (control) and three stress treatments; drought (50% FC), salinity (200 mM NaCl) and cadmium (2 mM Cd). For all plots, Si was applied at four levels (0, 2, 4 and 6 mM). Under no stress condition, Si applications increased Si content and improved growth as a result of reduced electrolyte leakage (EL), malondialdehyde (MDA) and Na+ contents. Under stress conditions, Si supplementation conferred higher growth, gas exchange, tissue water and membranes stabilities, and K+ content, and had limited MDA and Na+ contents and EL compared to those obtained without Si. Compared to those without Si, enzyme (e.g., superoxide dismutase, catalase and peroxidase) activity was improved by Si applications, which were linked with elevated antioxidants and osmoprotectants (e.g., free proline, soluble sugars, ascorbic acid and glutathione) contents, might providing antioxidant defense against abiotic stress in wheat. The level of 4 mM Si was most effective for mitigating the salt and drought stress conditions, while 6 mM Si level was most influentially for alleviating the Cd stress condition. These results suggest that Si is beneficial in remarkably affecting physiological phenomena and improving wheat growth under abiotic stress.


Assuntos
Silício/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Antioxidantes/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Secas , Malondialdeído/análise , Peroxidase/metabolismo , Salinidade , Superóxido Dismutase/metabolismo , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
15.
Saudi J Biol Sci ; 23(6): 773-781, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27872576

RESUMO

Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L-1) and ZnO-NPs (0, 15 and 30 mg L-1). Treatments with NaCl at both 3 and 6 g L-1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA