Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398601

RESUMO

Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL-1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.


Assuntos
Abietanos , Antioxidantes , Myrtus , Humanos , Antioxidantes/farmacologia , Myrtus/química , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia
2.
Biomed Pharmacother ; 165: 115144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437376

RESUMO

The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.


Assuntos
Doença de Alzheimer , Escopolamina , Camundongos , Animais , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Polifenóis/efeitos adversos , Clorofórmio/efeitos adversos , Quercetina/efeitos adversos , Simulação de Acoplamento Molecular , Glucuronídeos , Extratos Vegetais/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Antioxidantes/efeitos adversos , Metanol/química , Modelos Animais , Rutina
3.
Saudi J Biol Sci ; 30(2): 103555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632072

RESUMO

Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.

4.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364232

RESUMO

Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.


Assuntos
Malus , Neoplasias , Animais , Humanos , Pectinas/farmacologia , Pectinas/uso terapêutico , Frutas , Neoplasias/prevenção & controle , Carboidratos da Dieta
5.
Artigo em Inglês | MEDLINE | ID: mdl-36212970

RESUMO

Moringa oleifera and strawberry are cultivated extensively worldwide and are divinely blessed with an enormous amount of nutritional and medicinal constituents, such as vitamin C, vitamin E, iron, potassium, and phenolic antioxidants that play a pivotal role in treating, confining, and preventing diabetes and many kinds of cancer. The focus of the study is to develop different samples of highly acceptable ready to serve (RTS) Moringa strawberry juice blend by underutilizing Moringa and strawberry juice in different proportions. Moringa oleifera's bitter taste and green color steeply limits its acceptability and counter this drawback utilized with strawberry juice. The physicochemical analysis of blended juice was performed to investigate the suitability and keeping quality of the juice mixture. The collected data signify that pH titratable acidity (TA) and total soluble solids (TSS) the slight modification after the inclusion of Moringa juice extract and throughout the storage. The Moringa treatment positively improved the total phenolic content (TPC), antioxidant, and vitamin C from 12 to 49.17 mg GAE/100g, 61.41 to 87.69%, and 64.03 to 86.65 mg/100 mL, respectively, but there was a slight decline in antioxidant quantity while stored under refrigerated conditions for one month. An assimilative trend was noticed in TPC and vitamin C, which collapsed from 49.17-36.32 mg GAE to 86.65-79.19 mg, respectively. In accordance with sensory analysis T 2 (90% strawberry juice and 10% Moringa extract), the juice blend was rated best in context to flavor, color, and taste. This juice blend proved to be greatly effective especially for children suffering from malnutrition as well as women to counter with its appreciable number of nutritional constituents.

6.
Life (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36676048

RESUMO

The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA