Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408911

RESUMO

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Assuntos
Trigonella , Zinco , Boro/metabolismo , Boro/farmacologia , Clorofila A/metabolismo , Estresse Salino , Tensoativos/metabolismo , Tensoativos/farmacologia , Trigonella/metabolismo , Zinco/metabolismo , Zinco/farmacologia
2.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102555

RESUMO

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Ecossistema , Antioxidantes/metabolismo , Estresse Oxidativo , Solo/química , Açúcares/metabolismo , Poluentes do Solo/metabolismo
3.
Ecotoxicol Environ Saf ; 268: 115699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979353

RESUMO

This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.


Assuntos
Nanopartículas , Oryza , Cádmio/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Raízes de Plantas/metabolismo , Plântula
4.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843704

RESUMO

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Assuntos
Anti-Infecciosos , Nitella , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Ésteres
5.
Sci Rep ; 13(1): 14845, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684294

RESUMO

The development of an efficient, safe, and environment-friendly technique to terminate tuber dormancy in potatoes (Solanum tuberosum L.) is of great concern due to the immense scope of multiple cropping all over the globe. The breakage of tuber dormancy has been associated with numerous physiological changes, including a decline in the level of starch and an increase in the levels of sugars during storage of freshly harvested seed potatoes, although their consistency across genotypes and various dormancy-breaking techniques have not yet been fully elucidated. The purpose of the present research is to assess the efficacy of four different dormancy-breaking techniques, such as soaking in 90, 60, or 30 mg L-1 solutions of benzyl amino purine (BAP) and 30, 20, or 10 mg L-1 gibberellic acid (GA3) alone and in the combination of optimized concentrations; cold pre-treatment at 6, 4, or 2 °C; electric shock at 80, 60, 40, or 20 Vs; and irradiation at 3.5, 3, 2.5, 2, 1.5, or 1 kGy on the tuber dormancy period and sprout length of six genotypes. Furthermore, the changes that occurred in tuber weight and endogenous starch, sucrose, fructose, and glucose contents in experimental genotypes following the application of these techniques were also examined. Overall, the most effective technique to terminate tuber dormancy and hasten spout growth was the combined application of BAP and GA3, which reduced the length of dormancy by 9.6 days compared to the untreated control, following 6.7 days of electric current, 4.4 days of cold pre-treatment, and finally irradiation (3.3 days). The 60 mg L-1 solution of BAP greatly reduced the dormancy period in all genotypes but did not affect the sprout length at all. The genotypes showed a weak negative correlation (r = - 0.4) (P < 0.05) of endogenous starch contents with dormancy breakage and weight loss or a moderate (r = - 0.5) correlation with sprout length, but a strong positive correlation (r = 0.8) of tuber glucose, fructose, and sucrose contents with dormancy breakage and weight loss. During 3 weeks of storage, sprouting commencement and significant weight loss occurred as tuber dormancy advanced towards breakage due to a reduction in starch and an increase in the sucrose, fructose, and glucose contents of the tubers. These findings could be advantageous for postponing or accelerating seed potato storage as well as investigating related physiological research in the future.


Assuntos
Solanum tuberosum , Açúcares , Solanum tuberosum/genética , Glucose , Morte , Frutose , Genótipo , Amido , Sacarose
6.
PLoS One ; 18(8): e0289900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590216

RESUMO

There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21st century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, γ aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involved in defense mechanism.


Assuntos
Capsicum , Antioxidantes , Clorofila A , Secas , Produtos Agrícolas , Desidratação
7.
Sci Rep ; 13(1): 8080, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202455

RESUMO

Undoubtedly, it is important to remain vigilant and manage invasive grasses to prevent their spread and mitigate their negative impact on the environment. However, these aggressive plants can also play a beneficial role in certain contexts. For example, several invasive grasses provide valuable forage for livestock and have disease control potential. Therefore, a research experiment was conducted to explore the pros and cons of this approach, not only for surrounding vegetation but also for human and animal disease control. The study is primarily focused on developing livestock feed, plant-derived herbicides, and an understanding of the phytotoxic effects of invasive species. All plant parts of Cenchrus ciliaris L., Polypogon monspeliansis L., and Dicanthium annulatum (Forssk.) Stapf, were tested for their phyto-chemical screening, proximate, and toxicity analysis which was caused by the methanolic extract of these grass species. Qualitative phytochemical screening tests were performed for proximate composition analysis and toxicity assessment essays. The phytochemical analysis revealed the positive results for alkaloids, flavonoids, coumarins, phenols, saponins, and glycosides, while negative for tannins. Comparison of proximate analysis intimated maximum moisture (10.8%) and crude fat (4.1%) in P. monspeliensis, whereas maximum dry matter (84.1%), crude protein (13.95%), crude fiber (11%), and ash (7.2%) in D. annulatum. Five (10, 100, 500, 100, 10,000 ppm) and three (10, 1000, 10,000 ppm) different concentrations of methanolic extract prepared from C. ciliaris, P. monspeliansis, and D. annulatum were used respectively for root inhibition and seed germination essay. Furthermore, three different concentrations (10, 30, 50 mg) of plant fine powder were used for sandwich method test. There was a significant decline in the growth rate of experimental model radish seeds (P > 0.005), and results from sandwich method tests showed suppressed growth of root hairs, inhibiting the anchoring of the radish seed. In comparison, results manifest that; P. monspeliansis indicated an upsurge of inhibition (66.58% at 10,000 ppm), D. annulatum revealed soar germination (75.86% in controlled conditions), and C. ciliaris exhibited dramatic shoot up of inhibition because of sandwich method test (14.02% at 50 mg). In conclusion, although grasses are toxic, it is important to consider the beneficiary account.


Assuntos
Alcaloides , Extratos Vegetais , Humanos , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Poaceae , Espécies Introduzidas , Taninos/análise , Alcaloides/toxicidade , Alcaloides/análise , Compostos Fitoquímicos/toxicidade
8.
Biology (Basel) ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552290

RESUMO

Rhizosphere microbiome is a dynamic and complex zone of microbial communities. This complex plant-associated microbial community, usually regarded as the plant's second genome, plays a crucial role in plant health. It is unquestioned that plant microbiome collectively contributes to plant growth and fitness. It also provides a safeguard from plant pathogens, and induces tolerance in the host against abiotic stressors. The revolution in omics, gene-editing and sequencing tools have somehow led to unravel the compositions and latent interactions between plants and microbes. Similarly, besides standard practices, many biotechnological, (bio)chemical and ecological methods have also been proposed. Such platforms have been solely dedicated to engineer the complex microbiome by untangling the potential barriers, and to achieve better agriculture output. Yet, several limitations, for example, the biological obstacles, abiotic constraints and molecular tools that capably impact plant microbiome engineering and functionality, remained unaddressed problems. In this review, we provide a holistic overview of plant microbiome composition, complexities, and major challenges in plant microbiome engineering. Then, we unearthed all inevitable abiotic factors that serve as bottlenecks by discouraging plant microbiome engineering and functionality. Lastly, by exploring the inherent role of micro/macrofauna, we propose economic and eco-friendly strategies that could be harnessed sustainably and biotechnologically for resilient plant microbiome engineering.

9.
Front Plant Sci ; 13: 983156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212291

RESUMO

While of lesser prevalence than boron (B) deficient soils, B-rich soils are important to study as they can cause B toxicity in the field and subsequently decrease crop yields in different regions of the world. We have conducted the present study to examine the role of the individual or combined application of silicon (Si) and NPK fertilizer in B-stressed spinach plants (Spinacia oleracea L.). S. oleracea seedlings were subjected to different NPK fertilizers, namely, low NPK (30 kg ha-2) and normal NPK (60 kg ha-2)], which were also supplemented by Si (3 mmol L-1), for varying levels of B in the soil i.e., 0, 250, and 500 mg kg-1. Our results illustrated that the increasing levels of B in the soil caused a substantial decrease in the plant height, number of leaves, number of stems, leaf area, plant fresh weight, plant dry weight, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid content, net photosynthesis, stomatal conductance, transpiration rate, magnesium content in the roots, magnesium contents in the shoots, phosphorus content in the roots, phosphorus content in the leaves in the shoots, iron content in the roots, iron content in the shoots, calcium content in the roots, and calcium content in the shoots. However, B toxicity in the soil increased the concentration of malondialdehyde, hydrogen peroxide, and electrolyte leakage which were also manifested by the increasing activities of enzymatic [superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)], and non-enzymatic antioxidants (phenolic, flavonoid, ascorbic acid, and anthocyanin content). B toxicity in the soil further increased the concentration of organic acids in the roots such as oxalic acid, malic acid, formic acid, citric acid, acetic acid, and fumaric acid. The addition of Si and fertilizer levels in the soil significantly alleviated B toxicity effects on S. oleracea by improving photosynthetic capacity and ultimately plant growth. The increased activity of antioxidant enzymes in Si and NPK-treated plants seems to play a role in capturing stress-induced reactive oxygen species, as was evident from the lower levels of oxidative stress indicators, organic acid exudation, and B concentration in the roots and shoots of Si and NPK-treated plants. Research findings, therefore, suggested that the Si and NPK application can ameliorate B toxicity in S. oleracea seedlings and result in improved plant growth and composition under metal stress as depicted by the balanced exudation of organic acids.

10.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144480

RESUMO

Salinity is one of the most prevalent abiotic stresses which not only limits plant growth and yield, but also limits the quality of food products. This study was conducted on the surface functionalization of phosphorus-rich mineral apatite nanoparticles (ANPs), with thiourea as a source of nitrogen (TU-ANPs) and through a co-precipitation technique for inducing osmotic stress tolerance in Zea mays. The resulting thiourea-capped apatite nanostructure (TU-ANP) was characterized using complementary analytical techniques, such as EDX, SEM, XRD and IR spectroscopy. The pre-sowing of soaked seeds of Zea mays in 1.00 µg/mL, 5.00 µg/mL and 10 µg/mL of TU-ANPs yielded growth under 0 mM, 60 mM and 100 mM osmotic stress of NaCl. The results show that Ca and P salt acted as precursors for the synthesis of ANPs at an alkaline pH of 10-11. Thiourea as a source of nitrogen stabilized the ANPs' suspension medium, leading to the synthesis of TU-ANPs. XRD diffraction analysis validated the crystalline nature of TU-ANPs with lattice dimensions of 29 nm, calculated from FWHM using the Sherrer equation. SEM revealed spherical morphology with polydispersion in size distribution. EDS confirmed the presence of Ca and P at a characteristic KeV, whereas IR spectroscopy showed certain stretches of binding functional groups associated with TU-ANPs. Seed priming with TU-ANPs standardized germination indices (T50, MGT, GI and GP) which were significantly declined by NaCl-based osmotic stress. Maximum values for biochemical parameters, such as sugar (39.8 mg/g at 10 µg/mL), protein (139.8 mg/g at 10 µg/mL) and proline (74.1 mg/g at 10 µg/mL) were recorded at different applied doses of TU-ANP. Antioxidant biosystems in the form of EC 1.11.1.6 catalase (11.34 IU/g FW at 10 µg/mL), EC 1.11.1.11 APX (0.95 IU/G FW at 10 µg/mL), EC 1.15.1.1 SOD (1.42 IU/g FW at 5 µg/mL), EC 1.11.1.7 POD (0.43 IU/g FW at 5 µg/mL) were significantly restored under osmotic stress. Moreover, photosynthetic pigments, such as chlorophyll A (2.33 mg/g at 5 µg/mL), chlorophyll B (1.99 mg/g at 5 µg/mL) and carotenoids (2.52 mg/g at 10 µg/mL), were significantly amplified under osmotic stress via the application of TU-ANPs. Hence, the application of TU-ANPs restores the growth performance of plants subjected to induced osmotic stress.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apatitas , Carotenoides , Catalase/metabolismo , Clorofila A , Nitrogênio , Pressão Osmótica , Fósforo , Prolina , Cloreto de Sódio , Açúcares , Superóxido Dismutase , Tioureia/farmacologia , Zea mays/metabolismo
11.
Sci Rep ; 12(1): 11997, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835850

RESUMO

Phosphorus (P) deficiency is the main hurdle in achieving sustainable crop production ps especially in calcareous soils. Using bio-fertilizers like phosphate solubilizing bacteria (PSB) could be a useful approach for sustainable P management as they improve P availability in soil via dissolution, desorption and mineralization reactions. In addition, application of organic amendments with PSB could further ameliorate soil conditions for sustainable management of immobilized nutrients in calcarious soils. Therefore, we performed pot experiment to study the role of PSB in nullifying antagonistic effects of liming (4.78, 10, 15 and 20%) on P availability from poultry manure (PM), farm yard manure (FYM), single super phosphate (SSP) and rock phosphate (RP) in alkaline soils. PSB inoculation improved wheat growth, P availability and stimulated soil acidification over control regardless of P sources and lime levels. Soil calcification adversely affected plant growth, P nutrition, induced soil salinity and alkalinity, however, PSB and manures application potentially nullified such harmful effects over mentioned traits. Individually, organic sources were superior than mineral sources however, the performance of mineral fertilizers with PSB was at par to sole application of manures. Furthermore, application of RP with PSB proved as effective as sole SSP. Therefore, using PSB as bio-fertilizer has huge potential for improving P availability in calcareous soils.


Assuntos
Fertilizantes , Solo , Bactérias , Fertilizantes/análise , Esterco , Fosfatos/análise , Fósforo , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA