Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Agric Food Chem ; 71(30): 11476-11490, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37384918

RESUMO

Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 µM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.


Assuntos
Hipertensão , Punica granatum , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo , Antioxidantes/química
2.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116219

RESUMO

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Feminino , Camundongos , Animais , Canais de Cálcio Tipo T/metabolismo , Simulação de Acoplamento Molecular , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonóis , Camundongos Knockout , Proteases Específicas de Ubiquitina/metabolismo
3.
Chem Biol Interact ; 376: 110452, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933777

RESUMO

Artemisia is one of the largest genera in the plant family Asteraceae and has long been used in traditional medicine for its antitussive, analgesic, antihypertensive, antitoxic, antiviral, antimalarial, and anti-inflammatory properties. However, the anti-diabetic activity of Artemisia montana has not been broadly studied. The goal of this study was to determine whether extracts of the aerial parts of A. montana and its main constituents inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase activities. We isolated nine compounds from A. montana including ursonic acid (UNA) and ursolic acid (ULA), which significantly inhibited PTP1B with IC50 values of 11.68 and 8.73 µM, respectively. In addition, UNA showed potent inhibitory activity against α-glucosidase (IC50 = 61.85 µM). Kinetic analysis of PTP1B and α-glucosidase inhibition revealed that UNA was a non-competitive inhibitor of both enzymes. Docking simulations of UNA demonstrated negative binding energies and close proximity to residues in the binding pockets of PTP1B and α-glucosidase. Molecular docking simulations between UNA and human serum albumin (HSA) revealed that UNA binds tightly to all three domains of HSA. Furthermore, UNA significantly inhibited fluorescent AGE formation (IC50 = 4.16 µM) in a glucose-fructose-induced HSA glycation model over the course of four weeks. Additionally, we investigated the molecular mechanisms underlying the anti-diabetic effects of UNA in insulin-resistant C2C12 skeletal muscle cells and discovered that UNA significantly increased glucose uptake and decreased PTP1B expression. Further, UNA increased GLUT-4 expression level by activating the IRS-1/PI3K/Akt/GSK-3 signaling pathway. These findings clearly demonstrate that UNA from A. montana shows great potential for treatment of diabetes and its complications.


Assuntos
Artemisia , Diabetes Mellitus , Insulinas , Humanos , Lactente , Hipoglicemiantes/farmacologia , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Artemisia/química , Artemisia/metabolismo , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase/metabolismo , Montana , Diabetes Mellitus/tratamento farmacológico , Transdução de Sinais , Proteína Tirosina Fosfatase não Receptora Tipo 1
4.
ACS Chem Neurosci ; 13(4): 524-536, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113527

RESUMO

Cav3.2 calcium channels are important mediators of nociceptive signaling in the primary afferent pain pathway, and their expression is increased in various rodent models of chronic pain. Previous work from our laboratory has shown that this is in part mediated by an aberrant expression of deubiquitinase USP5, which associates with these channels and increases their stability. Here, we report on a novel bioactive rhodanine compound (II-1), which was identified in compound library screens. II-1 inhibits biochemical interactions between USP5 and the Cav3.2 domain III-IV linker in a dose-dependent manner, without affecting the enzymatic activity of USP5. Molecular docking analysis reveals two potential binding pockets at the USP5-Cav3.2 interface that are distinct from the binding site of the deubiquitinase inhibitor WP1130 (a.k.a. degrasyn). With an understanding of the ability of some rhodanines to produce false positives in high-throughput screening, we have conducted several orthogonal assays to confirm the validity of this hit, including in vivo experiments. Intrathecal delivery of II-1 inhibited both phases of formalin-induced nocifensive behaviors in mice, as well as abolished thermal hyperalgesia induced by the delivery of complete Freund's adjuvant (CFA) to the hind paw. The latter effects were abolished in Cav3.2 null mice, thus confirming that Cav3.2 is required for the action of II-1. II-1 also mediated a robust inhibition of mechanical allodynia induced by injury to the sciatic nerve. Altogether, our data uncover a novel class of analgesics─well suited to rapid structure-activity relationship studies─that target the Cav3.2/USP5 interface.


Assuntos
Analgésicos , Canais de Cálcio Tipo T , Neuralgia , Proteases Específicas de Ubiquitina , Analgésicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuralgia/metabolismo , Relação Estrutura-Atividade , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo
5.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684833

RESUMO

Cassia obtusifolia L., of the Leguminosae family, is used as a diuretic, laxative, tonic, purgative, and natural remedy for treating headache, dizziness, constipation, tophobia, and lacrimation and for improving eyesight. It is commonly used in tea in Korea. Various anthraquinone derivatives make up its main chemical constituents: emodin, chrysophanol, physcion, obtusifolin, obtusin, au rantio-obtusin, chryso-obtusin, alaternin, questin, aloe-emodin, gluco-aurantio-obtusin, gluco-obtusifolin, naphthopyrone glycosides, toralactone-9-ß-gentiobioside, toralactone gentiobioside, and cassiaside. C. obtusifolia L. possesses a wide range of pharmacological properties (e.g., antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and neuroprotective properties) and may be used to treat Alzheimer's disease, Parkinson's disease, and cancer. In addition, C. obtusifolia L. contributes to histamine release and antiplatelet aggregation. This review summarizes the botanical, phytochemical, and pharmacological features of C. obtusifolia and its therapeutic uses.


Assuntos
Cassia/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Fitoterapia , Plantas Medicinais/química , Animais , Antraquinonas/química , Antraquinonas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Etnofarmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Medicina Tradicional Coreana , Mosquitos Vetores/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Compostos Fitoquímicos/uso terapêutico , República da Coreia
6.
J Agric Food Chem ; 69(21): 6073-6086, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014666

RESUMO

Ginseng (Panax ginseng C. A. Meyer) extract has been reported to inhibit the angiotensin converting enzyme (ACE); however, the possible inhibitory action of most of its constituents (ginsenosides) against ACE remains unknown. Thus, in this study, we investigated ginsenoside derivatives' inhibitory effect on ACE. We assessed the activities of 22 ginsenosides, most of which inhibited ACE significantly. Notably, protopanaxatriol, protopanaxadiol, and ginsenoside Rh2 exhibited the most potent ACE inhibitory potential, with IC50 values of 1.57, 2.22, and 5.60 µM, respectively. Further, a kinetic study revealed different modes of inhibition against ACE. Molecular docking studies have confirmed that ginsenosides inhibit ACE via many hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that block the catalytic activity of ACE. In addition, we found that the active ginsenosides stimulated glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. Moreover, the most active ginsenosides' reactive oxygen species (ROS) and peroxynitrite (ONOO-) scavenging properties were evaluated, in which IC50 values ranged from 1.44-43.83 to 2.36-39.56 µM in ONOO- and ROS, respectively. The results derived from these computational and in vitro experiments provide additional scientific support for the anecdotal use of ginseng in traditional medicine to treat cardiovascular diseases such as hypertension.


Assuntos
Ginsenosídeos , Panax , Angiotensinas , Ginsenosídeos/farmacologia , Simulação de Acoplamento Molecular , Panax/metabolismo , Peptidil Dipeptidase A/metabolismo , Relação Estrutura-Atividade
7.
Antioxidants (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672051

RESUMO

As a traditional medicine, Angelica decursiva has been used for the treatment of many diseases. The goal of this study was to evaluate the potential of four natural major dihydroxanthyletin-type coumarins-(+)-trans-decursidinol, Pd-C-I, Pd-C-II, and Pd-C-III-to inhibit the enzymes, protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In the kinetic study of the PTP1B enzyme's inhibition, we found that (+)-trans-decursidinol, Pd-C-I, and Pd-C-II led to competitive inhibition, while Pd-C-III displayed mixed-type inhibition. Moreover, (+)-trans-decursidinol exhibited competitive-type, and Pd-C-I and Pd-C-II mixed-type, while Pd-C-III showed non-competitive type inhibition of α-glucosidase. Docking simulations of these coumarins showed negative binding energies and a similar proximity to residues in the PTP1B and α-glucosidase binding pocket, which means they are closely connected and strongly binding with the active enzyme site. In addition, dihydroxanthyletin-type coumarins are up to 40 µM non-toxic in HepG2 cells and have substantially increased glucose uptake and decreased expression of PTP1B in insulin-resistant HepG2 cells. Further, coumarins inhibited ONOO--mediated albumin nitration and scavenged peroxynitrite (ONOO-), and reactive oxygen species (ROS). Our overall findings showed that dihydroxanthyletin-type coumarins derived from A. decursiva is used as a dual inhibitor for enzymes, such as PTP1B and α-glucosidase, as well as for insulin susceptibility.

8.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683604

RESUMO

The bioactivity of ten traditional Korean Angelica species were screened by angiotensin-converting enzyme (ACE) assay in vitro. Among the crude extracts, the methanol extract of Angelica decursiva whole plants exhibited potent inhibitory effects against ACE. In addition, the ACE inhibitory activity of coumarins 1-5, 8-18 was evaluated, along with two phenolic acids (6, 7) obtained from A. decursiva. Among profound coumarins, 11-18 were determined to manifest marked inhibitory activity against ACE with IC50 values of 4.68-20.04 µM. Compounds 12, 13, and 15 displayed competitive inhibition against ACE. Molecular docking studies confirmed that coumarins inhibited ACE via many hydrogen bond and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that blocked the catalytic activity of ACE. The results derived from these computational and in vitro experiments give additional scientific support to the anecdotal use of A. decursiva in traditional medicine to treat cardiovascular diseases such as hypertension.


Assuntos
Angelica/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cumarínicos/farmacologia , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Cumarínicos/química , Cinética , Simulação de Acoplamento Molecular
9.
Arch Pharm Res ; 41(2): 196-207, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29230690

RESUMO

The formation of advanced glycation end-products (AGE) and aldose reductase activity have been implicated in the development of diabetic complications. The present study was aimed to evaluate human recombinant aldose reductase (HRAR) and AGE inhibitory activity of seven natural dihydroxanthyletin-type coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), Pd-C-I (3), Pd-C-II (4), Pd-C-III (5), decursidin (6), and (+)-trans-decursidinol (7) from Angelica decursiva. Coumarins 1-7 showed potent HRAR and AGE inhibitory activities with ranges of IC50 values of 1.03-21.31 and 0.41-5.56 µM, respectively. In the kinetic study for HRAR enzyme inhibition, coumarins 1, 3, 4, and 7 were competitive-type inhibitors, 6 was a mixed-type inhibitor, whereas 2 and 5 were noncompetitive-type inhibitors. Furthermore, we also predicted the docking interactions of HRAR with coumarins 1-7 using AutoDock Vina, and as a result, the simulated enzyme-inhibitor complexes exhibited negative binding energies (Autodock Vina = - 9.6 to - 8.1 kcal/mol for HRAR), indicating a high affinity and tight binding capacity for the HRAR active site. Our results clearly indicate the potential HRAR and AGE formation inhibitory activities of dihydroxanthyletin-type coumarins, which could be further explored to develop therapeutic modalities for the treatment of diabetes and related complications.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Angelica , Cumarínicos/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Aldeído Redutase/metabolismo , Cumarínicos/química , Cumarínicos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo
10.
Mar Drugs ; 15(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194348

RESUMO

Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales) is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO--mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively). In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid) were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14-14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively). In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO--mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the prevention and treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Hipoglicemiantes/química , Extratos Vegetais/química , Plastoquinona/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sargassum/química , Animais , Organismos Aquáticos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Plastoquinona/farmacologia
11.
Arch Pharm Res ; 40(12): 1403-1413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29177868

RESUMO

Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.


Assuntos
Cumarínicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Flavonas/farmacologia , Juniperus/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/agonistas , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonas/química , Flavonas/isolamento & purificação , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Resistência à Insulina , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Molecules ; 22(10)2017 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-28946641

RESUMO

Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone (1) and 6-formyl umbelliferone (2), from Angelica decursiva, and the synthesis of 8-formyl umbelliferone (3) from 1. We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure-activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1, respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.


Assuntos
Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Angelica/química , Ácido Aspártico Endopeptidases/metabolismo , Colinesterases/metabolismo , Butirilcolinesterase/metabolismo , Cumarínicos/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Umbeliferonas/química
13.
Bioorg Med Chem ; 25(15): 3964-3970, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576634

RESUMO

A wide range of pharmacological properties of Sargassum spp. extracts and isolated components have been recognized. Although individual meroterpenoids of Sargassum species have been reported to possess strong activity against Alzheimer's disease (AD), the active compounds of Sargassum serratifolium have not been fully explored. Therefore, we evaluated the anti-AD activity of S. serratifolium extract through enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Three meroterpenoids (sargahydroquinoic acid (1), sargachromenol (2) and sargaquinoic acid (3)) were isolated from S. serratifolium. These compounds showed moderate AChE inhibitory activity, but exhibited potent inhibitory activity against BChE and BACE1 (15.1, 9.4, and 10.4µM for BChE; 4.3, 6.9, and 12.5µM for BACE1, respectively). Kinetic study and molecular docking simulation of these compounds demonstrated that 1 and 3 interacted with both catalytic aspartyl residues and allosteric sites of BACE1, whereas 2 interacted with the allosteric site of BACE1. The results of the present study demonstrate that meroterpenoids from S. serratifolium might be beneficial in the treatment of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Sargassum/química , Terpenos/farmacologia , Sítio Alostérico , Catálise , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Terpenos/química
14.
Molecules ; 22(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035984

RESUMO

The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory activities on PTP1B and α-glucosidase, respectively. Moreover, we examined the effects of alaternin and emodin on stimulation of glucose uptake by insulin-resistant human HepG2 cells. The results showed that alaternin and emodin significantly increased the insulin-provoked glucose uptake. In addition, our kinetic study revealed that alaternin competitively inhibited PTP1B, and showed mixed-type inhibition against α-glucosidase. In order to confirm enzyme inhibition, we predicted the 3D structure of PTP1B using Autodock 4.2 to simulate the binding of alaternin. The docking simulation results demonstrated that four residues of PTP1B (Gly183, Arg221, Ile219, Gly220) interact with three hydroxyl groups of alaternin and that the binding energy was negative (-6.30 kcal/mol), indicating that the four hydrogen bonds stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, resulting in more effective PTP1B inhibition. The results of the present study clearly demonstrate that C. obtusifolia and its constituents have potential anti-diabetic activity and can be used as a functional food for the treatment of diabetes and associated complications.


Assuntos
Cassia/química , Emodina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Naftalenos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Emodina/farmacologia , Glucose/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina/fisiologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Preparações de Plantas/farmacologia
15.
J Ethnopharmacol ; 190: 219-30, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27275774

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginsenosides are natural product steroid glycosides and triterpene saponins obtained from the Panax species. Panax ginseng has been widely used as a traditional Chinese medicine (TCM) for around a thousand years, especially in East Asian countries. Ginseng, the root and rhizome of the most popular species P. ginseng, used as tonic, prophylactic agent and restorative. In TCM, ginseng is highly valued herb and has been applied to a variety of pathological conditions and illnesses such as hypodynamia, anorexia, shortness of breath, palpitation, insomnia, impotence, hemorrhage and diabetes. AIM OF THE STUDY: The basic aim of this study was to evaluate the anti-Alzheimer's disease activities of selected ginsenosides (Rb1, Rb2, Rc, Re, Rg1, and Rg3) according to peroxynitrite (ONOO(‒)) scavenging activity and inhibitory activity of ONOO(-)-mediated nitrotyrosine formation as a measure of changes in oxidative stress. In addition, molecular docking simulation studies were performed to predict binding energies of the ginsenosides with ß-site amyloid precursor protein cleaving enzyme 1 (BACE1, ß-secretase) and identify the interacting residues. MATERIALS AND METHODS: In vitro cholinesterase enzyme assays by using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1 were performed. In vitro authentic peroxynitrite scavenging activity and inhibitory activity against ONOO(-)-mediated nitrotyrosine formation were also performed. Molecular docking simulation studies were performed with Autodock Vina software and Discovery studio 4.1. RESULTS: In vitro enzyme assays demonstrated that ginsenosides have significant inhibitory potential against AChE, BChE, and BACE1, as well as ONOO(-) and nitrotyrosine formation. Most importantly, significant AChE inhibitory activities were observed for Re; BChE for Rg3; and BACE1 for Rc, with IC50 values of 29.86±3.20, 16.80±0.36, and 59.81±2.74µg/mL, respectively. Among the tested ginsenosides, Rb1 exhibited a higher scavenging activity against ONOO(-) with an IC50 value of 27.86±1.34µg/mL, while Rc and Rg3 exhibited impressive inhibitory activity against the formation of nitrotyrosine. In addition, molecular docking studies revealed potential BACE1 inhibitory activity of ginsenosides, especially Rb1 and Rb2, which exhibited good binding affinities towards BACE1, with docking scores of -10kcal/mol. CONCLUSION: The findings of the present study suggest the potential of ginsenosides (Rb1, Rb2, Rc, Re, Rg1, and Rg3) for use in the development of therapeutic or preventive agents for Alzheimer's disease, especially through inhibition of AChE, BChE and BACE1 activities, as well as scavenging of ONOO(-) and inhibition of nitrotyrosine formation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ginsenosídeos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Tirosina/análogos & derivados , Tirosina/metabolismo
16.
J Ethnopharmacol ; 191: 152-160, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27321278

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Semen Cassiae has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Alzheimer's disease (AD) models. AIM OF THE STUDY: The basic goal of this study was to evaluate the anti-AD activities of C. obtusifolia and its major constituents. Previously, the extract of C. obtusifolia seeds, was reported to have memory enhancing properties and anti-AD activity to ameliorate amyloid ß-induced synaptic dysfunction. However, the responsible components of C. obtusifolia seeds in an AD are currently still unknown. In this study, we investigated the inhibitory effects of C. obtusifolia and its constituents against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) enzyme activity. MATERIALS AND METHODS: In vitro cholinesterase enzyme assays by using AChE, BChE, and BACE1 were performed. We also scrutinized the potentials of Cassiae semen active component as BACE1 inhibitors via enzyme kinetics and molecular docking simulation. RESULTS: In vitro enzyme assays demonstrated that C. obtusifolia and its major constituents have promising inhibitory potential against AChE, BChE, and BACE1. All Cassiae semen constituents exhibited potent inhibitory activities against AChE and BACE1 with IC50 values of 6.29-109µg/mL and 0.94-190µg/mL, whereas alaternin, questin, and toralactone gentiobioside exhibited significant inhibitory activities against BChE with IC50 values of 113.10-137.74µg/mL. Kinetic study revealed that alaternin noncompetitively inhibited, whereas cassiaside and emodin showed mixed-type inhibition against BACE1. Furthermore, molecular docking simulation results demonstrated that hydroxyl group of alaternin and emodin tightly interacted with the active site residues of BACE1 and their relevant binding energies (-6.62 and -6.89kcal/mol), indicating a higher affinity and tighter binding capacity of these compounds for the active site of BACE1. CONCLUSION: The findings of the present study suggest the potential of C. obtusifolia and its major constituents for use in the development of therapeutic or preventive agents for AD, especially through inhibition of AChE, BChE and BACE1 activities.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antraquinonas/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Cassia/química , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Antraquinonas/isolamento & purificação , Antraquinonas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/metabolismo , Relação Dose-Resposta a Droga , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Humanos , Cinética , Metanol/química , Simulação de Acoplamento Molecular , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Plantas Medicinais , Ligação Proteica , Pironas/isolamento & purificação , Pironas/farmacologia , Sementes/química , Solventes/química
17.
Phytother Res ; 29(10): 1540-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26172104

RESUMO

Phytochemical study on the corks of Euonymus alatus resulted in the isolation of a novel 3-hydroxycoumarinflavanol (23), along with ten triterpenoids (1-10), ten phenolic derivatives (11-20), and two flavonoid glycosides (21 and 22). Their structures were determined by extensive 1D and 2D-nuclear magnetic resonance spectroscopic and mass spectrometry data analysis. Furthermore, their inhibitory effects against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase enzyme activity were evaluated. Compounds 6, 7, 9, 15, 19, and 23 were non-competitive inhibitors, exhibiting most potency with IC50 values ranging from 5.6 ± 0.9 to 18.4 ± 0.3 µm, against PTP1B. Compound 3 (competitive), compounds 5 and 15 (mixed-competitive) displayed potent inhibition with IC50 values of 15.1 ± 0.7, 23.6 ± 0.6 and 14.8 ± 0.9 µm, respectively. Moreover, compounds 15, 20, and 23 exhibited potent inhibition on α-glucosidase with IC50 values of 10.5 ± 0.8, 9.5 ± 0.6, and 9.1 ± 0.5 µm, respectively. Thus, these active ingredients may have value as new lead compounds for the development of new antidiabetic agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Euonymus , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Flavonoides/química , Hipoglicemiantes/farmacologia , Espectroscopia de Ressonância Magnética , Fenóis/química , alfa-Glucosidases/metabolismo
18.
J Ethnopharmacol ; 171: 28-36, 2015 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-26027757

RESUMO

ETHNOPHARMACOLOGIC RELEVANCE: Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. MATERIALS AND METHODS: In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. RESULTS: The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 µM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. CONCLUSION: Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold promise as therapeutic agents for the treatment of diabetes and related disease.


Assuntos
Alcaloides/farmacologia , Coptis , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Alcaloides/isolamento & purificação , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Ácido Peroxinitroso/metabolismo , Extratos Vegetais/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Rizoma/química , Tirosina/metabolismo
19.
Arch Pharm Res ; 38(12): 2153-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26119076

RESUMO

It has been reported that alkaloids derived from Coptis chinensis exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the inhibitory role of epiberberine in the early stages of 3T3-L1 adipocyte differentiation is uncharacterized. Here, we show that epiberberine had inhibitory effects on adipocyte differentiation and significantly decreased lipid accumulation by downregulating an adipocyte-specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1). Furthermore, we observed that epiberberine markedly suppressed the differentiation-mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly inhibited by treatment with epiberberine during adipogenesis. These results indicate that the anti-adipogenic mechanism of epiberberine is associated with inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of adipogenesis, such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the anti-adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 adipocyte differentiation. Moreover, the anti-adipogenic effects of epiberberine were not accompanied by modulation of ß-catenin.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Adipogenia/fisiologia , Berberina/análogos & derivados , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteína Oncogênica v-akt/fisiologia , Quinases raf/fisiologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Adipogenia/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Berberina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/fisiologia , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteína Oncogênica v-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Quinases raf/antagonistas & inibidores
20.
Bioorg Med Chem ; 23(13): 3126-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26003344

RESUMO

Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22µM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42µM. Compound 2 showed the most potent activity with an IC50 of 0.23µM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Lycopodiaceae/química , Inibidores de Proteases/química , Triterpenos/química , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Domínio Catalítico , Inibidores da Colinesterase/isolamento & purificação , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Inibidores de Proteases/isolamento & purificação , Ligação Proteica , Relação Estrutura-Atividade , Triterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA