Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(4): 775-788, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334217

RESUMO

The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders.


Assuntos
Organoides , Células-Tronco Pluripotentes , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Lipídeos , Retina , Células Fotorreceptoras Retinianas Cones
2.
Aging (Albany NY) ; 13(8): 10866-10890, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33872219

RESUMO

Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product ß-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.


Assuntos
Autofagia/efeitos dos fármacos , Atrofia Geográfica/tratamento farmacológico , Mebendazol/análogos & derivados , Feto Abortado , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Atrofia Geográfica/patologia , Humanos , Lipofuscina/metabolismo , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Cultura Primária de Células , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Serina-Treonina Quinases TOR/metabolismo
3.
N Engl J Med ; 372(20): 1887-97, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25938638

RESUMO

BACKGROUND: Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS: We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS: Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS: Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.).


Assuntos
DNA Complementar/administração & dosagem , Terapia Genética , Vetores Genéticos/administração & dosagem , Amaurose Congênita de Leber/terapia , Retina/fisiologia , cis-trans-Isomerases/genética , Adolescente , Animais , Criança , Dependovirus , Modelos Animais de Doenças , Progressão da Doença , Cães , Humanos , Amaurose Congênita de Leber/genética , Mutação , Células Fotorreceptoras de Vertebrados , Visão Ocular , Adulto Jovem
4.
J Gene Med ; 11(6): 486-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19340848

RESUMO

BACKGROUND: Adeno-associated virus serotype 2 (AAV2) vectors show considerable promise for ocular gene transfer. However, one potential barrier to efficacious long-term therapy is the development of immune responses against the vector or transgene product. METHODS: We evaluated cellular and humoral responses in mice following both single and repeated subretinal administration of AAV2, and examined their effects on RPE65 and green fluorescent protein transgene expression. RESULTS: Following subretinal administration of vector, splenocytes and T-cells from draining lymph nodes showed minimal activation following stimulation by co-culture with AAV2. Neutralizing antibodies (NAbs) were not detected in the ocular fluids of any mice receiving AAV2 or in the serum of mice receiving a lower dose. NAbs were present in the serum of a proportion of mice receiving a higher dose of the vector. Furthermore, no differences in immunoglobulin titre in serum or ocular fluids against RPE65 protein or AAV2 capsid between treated and control mice were detected. Histological examination showed no evidence of retinal toxicity or leukocyte infiltration compared to uninjected eyes. Repeat administration of low-dose AAV.hRPE65.hRPE65 to both eyes of RPE65(-/-) mice resulted in transgene expression and functional rescue, but re-administration of high-dose AAV2 resulted in boosted NAb titres and variable transgene expression in the second injected eye. CONCLUSIONS: These data, which were obtained in mice, suggest that, following subretinal injection, immune responses to AAV2 are dose-dependent. Low-dose AAV2 is well tolerated in the eye, with minimal immune responses, and transgene expression after repeat administration of vector is achievable. Higher doses lead to the expression of NAbs that reduce the efficacy of repeated vector administration.


Assuntos
Dependovirus/genética , Dependovirus/imunologia , Terapia Genética/métodos , Vetores Genéticos/imunologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Eletrorretinografia , Olho , Proteínas do Olho/genética , Feminino , Vetores Genéticos/administração & dosagem , Imunocompetência , Injeções , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Neutralização , cis-trans-Isomerases
5.
N Engl J Med ; 358(21): 2231-9, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18441371

RESUMO

Early-onset, severe retinal dystrophy caused by mutations in the gene encoding retinal pigment epithelium-specific 65-kD protein (RPE65) is associated with poor vision at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Goldmann perimetry in any of the three patients. We detected no change in retinal responses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747 [ClinicalTrials.gov].).


Assuntos
Cegueira/terapia , Proteínas de Transporte/genética , Proteínas do Olho/genética , Terapia Genética , Vetores Genéticos , Degeneração Retiniana/terapia , Adolescente , Adulto , Cegueira/congênito , Cegueira/genética , Cegueira/patologia , DNA Complementar , Dependovirus/genética , Técnicas de Transferência de Genes , Humanos , Injeções , Mutação , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/congênito , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Acuidade Visual , cis-trans-Isomerases
6.
Invest Ophthalmol Vis Sci ; 46(10): 3597-603, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186339

RESUMO

PURPOSE: Corneal endothelial cells in humans do not replicate to any meaningful extent. Diminishing density of the cell monolayer with age and in the disease states is a major cause of loss of corneal transparency. This study was conducted to test the hypothesis that overexpression of the transcription factor E2F2 results in replication in nonproliferating human corneal endothelial cells. METHODS: Whole human corneas were incubated for 2 hours in a solution of recombinant E1(-)/E3(-) adenovirus incorporating cDNA encoding E2F2 and green fluorescent protein (GFP) under control of a bidirectional promoter and subsequently maintained in ex vivo culture. Control specimens were incubated with an identical virus bearing the GFP sequence only, or virus-free medium. Efficiency of gene transfer and localization was examined by fluorescence microscopy. En face confocal microscopy of the corneal endothelial surface was used to image recombinant E2F2 expression. 5-bromodeoxyuridine (BrdU) incorporation was used to examine progression to the S phase. Changes in density of the corneal endothelium were quantified by specular microscopy and counting of trypan-blue-stained cells. Apoptosis was tested with a TUNEL assay. RESULTS: Recombinant proteins were expressed predominantly in the endothelium and in a high proportion of endothelial cells in the first week after exposure to virus, diminishing thereafter. Compared with the control, transduction with E2F2 resulted in progression from the G(1) to the S phase in a significant number of cells and in increased cell density. Apoptosis was not found to any significant extent. CONCLUSIONS: Overexpression of the transcription factor E2F2 in nonmitotic human corneal endothelial cells results in short-term expression, cell-cycle progression, and increased monolayer cell density.


Assuntos
Divisão Celular/fisiologia , Replicação do DNA/fisiologia , DNA Complementar/genética , Fator de Transcrição E2F2/genética , Endotélio Corneano/citologia , Transfecção , Adenovírus Humanos/genética , Apoptose , Contagem de Células , Células Cultivadas , Fator de Transcrição E2F2/metabolismo , Endotélio Corneano/metabolismo , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA