Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Nutr ; 9: 972379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061899

RESUMO

Bacopa monnieri has been used for centuries in Ayurvedic medicine, alone or in combination with other herbs, as a memory and learning enhancer, sedative, and anti-epileptic. This review aimed to highlight the health benefits of B. monnieri extracts (BME), focusing on anti-cancer and neurodegenerative diseases. We examined the clinical studies on phytochemistry and pharmacological application of BME. We further highlighted the mechanism of action of these extracts in varying types of cancer and their therapeutic implications. In addition, we investigated the underlying molecular mechanism in therapeutic interventions, toxicities, safety concerns and synergistic potential in cognition and neuroprotection. Overall, this review provides deeper insights into the therapeutic implications of Brahmi as a lead formulation for treating neurological disorders and exerting cognitive-enhancing effects.

2.
Biomed Pharmacother ; 147: 112658, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066300

RESUMO

The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Alcaloides/uso terapêutico , Benzaldeídos/uso terapêutico , Benzoquinonas/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Ácido Elágico/uso terapêutico , Humanos , Quercetina/uso terapêutico , SARS-CoV-2 , Timol/uso terapêutico , Triterpenos/uso terapêutico , Ácido Rosmarínico , Ácido Ursólico
3.
Food Chem ; 379: 132135, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063850

RESUMO

Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.


Assuntos
Catequina , Neoplasias , Catequina/análogos & derivados , Humanos , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Chá
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830043

RESUMO

Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Plantas Medicinais/química , Triterpenos/uso terapêutico , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/química , Humanos , Triterpenos/química , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA