Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0268880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867703

RESUMO

Motor Imagery Brain-Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity patterns associated with mental imagination of movement and convert them into commands for external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) algorithms, which require extensive signal processing and feature engineering to extract changes in sensorimotor rhythms (SMR). In recent years, Deep Learning (DL) models have gained popularity for EEG classification as they provide a solution for automatic extraction of spatio-temporal features in the signals. However, past BCI studies that employed DL models, only attempted them with a small group of participants, without investigating the effectiveness of this approach for different user groups such as inefficient users. BCI inefficiency is a known and unsolved problem within BCI literature, generally defined as the inability of the user to produce the desired SMR patterns for the BCI classifier. In this study, we evaluated the effectiveness of DL models in capturing MI features particularly in the inefficient users. EEG signals from 54 subjects who performed a MI task of left- or right-hand grasp were recorded to compare the performance of two classification approaches; a ML approach vs. a DL approach. In the ML approach, Common Spatial Patterns (CSP) was used for feature extraction and then Linear Discriminant Analysis (LDA) model was employed for binary classification of the MI task. In the DL approach, a Convolutional Neural Network (CNN) model was constructed on the raw EEG signals. Additionally, subjects were divided into high vs. low performers based on their online BCI accuracy and the difference between the two classifiers' performance was compared between groups. Our results showed that the CNN model improved the classification accuracy for all subjects within the range of 2.37 to 28.28%, but more importantly, this improvement was significantly larger for low performers. Our findings show promise for employment of DL models on raw EEG signals in future MI-BCI systems, particularly for BCI inefficient users who are unable to produce desired sensorimotor patterns for conventional ML approaches.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Algoritmos , Eletroencefalografia/métodos , Humanos , Imagens, Psicoterapia , Imaginação
2.
Front Hum Neurosci ; 15: 634748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889080

RESUMO

Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users' mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.

3.
PLoS One ; 15(4): e0230853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271781

RESUMO

Variation of information in the firing rate of neural population, as reflected in different frequency bands of electroencephalographic (EEG) time series, provides direct evidence for change in neural responses of the brain to hypnotic suggestibility. However, realization of an effective biomarker for spiking behaviour of neural population proves to be an elusive subject matter with its impact evident in highly contrasting results in the literature. In this article, we took an information-theoretic stance on analysis of the EEG time series of the brain activity during hypnotic suggestions, thereby capturing the variability in pattern of brain neural activity in terms of its information content. For this purpose, we utilized differential entropy (DE, i.e., the average information content in a continuous time series) of theta, alpha, and beta frequency bands of fourteen-channel EEG time series recordings that pertain to the brain neural responses of twelve carefully selected high and low hypnotically suggestible individuals. Our results show that the higher hypnotic suggestibility is associated with a significantly lower variability in information content of theta, alpha, and beta frequencies. Moreover, they indicate that such a lower variability is accompanied by a significantly higher functional connectivity (FC, a measure of spatiotemporal synchronization) in the parietal and the parieto-occipital regions in the case of theta and alpha frequency bands and a non-significantly lower FC in the central region's beta frequency band. Our results contribute to the field in two ways. First, they identify the applicability of DE as a unifying measure to reproduce the similar observations that are separately reported through adaptation of different hypnotic biomarkers in the literature. Second, they extend these previous findings that were based on neutral hypnosis (i.e., a hypnotic procedure that involves no specific suggestions other than those for becoming hypnotized) to the case of hypnotic suggestions, thereby identifying their presence as a potential signature of hypnotic experience.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Hipnose , Processamento de Sinais Assistido por Computador , Adulto , Entropia , Feminino , Humanos , Masculino
4.
IEEE Trans Neural Syst Rehabil Eng ; 26(3): 666-674, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522410

RESUMO

EEG-based brain computer interface (BCI) systems have demonstrated potential to assist patients with devastating motor paralysis conditions. However, there is great interest in shifting the BCI trend toward applications aimed at healthy users. Although BCI operation depends on technological factors (i.e., EEG pattern classification algorithm) and human factors (i.e., how well the person can generate good quality EEG patterns), it is the latter that is least investigated. In order to control a motor imagery-based BCI, users need to learn to modulate their sensorimotor brain rhythms by practicing motor imagery using a classical training protocol with an abstract visual feedback. In this paper, we investigate a different BCI training protocol using a human-like android robot (Geminoid HI-2) to provide realistic visual feedback. The proposed training protocol addresses deficiencies of the classical approach and takes the advantage of body-abled user capabilities. Experimental results suggest that android feedback-based BCI training improves the modulation of sensorimotor rhythms during motor imagery task. Moreover, we discuss how the influence of body ownership transfer illusion toward the android might have an effect on the modulation of event-related desynchronization/synchronization activity.


Assuntos
Interfaces Cérebro-Computador , Retroalimentação Sensorial , Imaginação/fisiologia , Adulto , Algoritmos , Calibragem , Eletroencefalografia/classificação , Eletroencefalografia/métodos , Eletromiografia , Feminino , Mãos , Voluntários Saudáveis , Humanos , Ilusões/psicologia , Masculino , Desempenho Psicomotor , Robótica , Adulto Jovem
5.
Sci Rep ; 3: 2396, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928891

RESUMO

Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.


Assuntos
Nível de Alerta/fisiologia , Biomimética/métodos , Interfaces Cérebro-Computador , Encéfalo/fisiologia , Ilusões/fisiologia , Propriedade , Robótica/métodos , Biorretroalimentação Psicológica/fisiologia , Imagem Corporal , Mãos/fisiologia , Humanos , Imaginação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA