RESUMO
Protein myristoylation is a means by which cells anchor proteins into membranes. The most common type of myristoylation occurs at an N-terminal glycine. However, myristoylation rarely occurs at an internal amino acid residue. Here we tested whether the α-subunit of the human large-conductance voltage- and Ca(2+)-activated K(+) channel (hSlo1) might undergo internal myristoylation. hSlo1 expressed in HEK293T cells incorporated [(3)H]myristic acid via a posttranslational mechanism, which is insensitive to cycloheximide, an inhibitor of protein biosynthesis. In-gel hydrolysis of [(3)H]myristoyl-hSlo1 with alkaline NH(2)OH (which cleaves hydroxyesters) but not neutral NH(2)OH (which cleaves thioesters) completely removed [(3)H]myristate from hSlo1, suggesting the involvement of a hydroxyester bond between hSlo1's hydroxyl-bearing serine, threonine, and/or tyrosine residues and myristic acid; this type of esterification was further confirmed by its resistance to alkaline Tris·HCl. Treatment of cells expressing hSlo1 with 100 µM myristic acid caused alteration of hSlo1 activation kinetics and a 40% decrease in hSlo1 current density from 20 to 12 nA*MΩ. Immunocytochemistry confirmed a decrease in hSlo1 plasmalemma localization by myristic acid. Replacement of the six serines or the seven threonines (but not of the single tyrosine) of hSlo1 intracellular loops 1 and 3 with alanines decreased hSlo1 direct myristoylation by 40-44%, whereas in combination decreased myristoylation by nearly 90% and abolished the myristic acid-induced change in current density. Our data demonstrate that an ion channel, hSlo1, is internally and posttranslationally myristoylated. Myristoylation occurs mainly at hSlo1 intracellular loop 1 or 3, and is an additional mechanism for channel surface expression regulation.
Assuntos
Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Ácido Mirístico/metabolismo , Serina/metabolismo , Treonina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Ésteres , Humanos , Imuno-Histoquímica , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Mutação , Técnicas de Patch-Clamp , Processamento de Proteína Pós-Traducional , Treonina/químicaRESUMO
Large conductance voltage- and calcium-activated potassium channels (MaxiK, BK(Ca)) are well known for sustaining cerebral and coronary arterial tone and for their linkage to vasodilator ß-adrenergic receptors. However, how MaxiK channels are linked to counterbalancing vasoconstrictor receptors is unknown. Here, we show that vasopressive thromboxane A2 receptors (TP) can intimately couple with and inhibit MaxiK channels. Activation of the receptor with its agonist trans-inhibits MaxiK independently of G-protein activation. This unconventional mechanism is supported by independent lines of evidence: (i) inhibition of MaxiK current by thromboxane A2 mimetic, U46619, occurs even when G-protein activity is suppressed; (ii) MaxiK and TP physically associate and display a high degree of proximity; and (iii) Förster resonance energy transfer occurs between fluorescently labeled MaxiK and TP, supporting a direct interaction. The molecular mechanism of MaxiK-TP intimate interaction involves the receptor's first intracellular loop and C terminus, and it entails the voltage-sensing conduction cassette of MaxiK channel. Further, physiological evidence of MaxiK-TP physical interaction is given in human coronaries and rat aorta, and by confirming TP role (with antagonist SQ29,548) in the U46619-induced MaxiK inhibition in human coronaries. We propose that vasoconstrictor TP receptor and MaxiK-channel direct interaction facilitates G-protein-independent TP to MaxiK trans-inhibition, which would promote vasoconstriction.