Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 5894416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262977

RESUMO

Cardiovascular disease is the primary reason for chronic heart diseases and mortality worldwide. Hypertension (HTN) is the utmost dominant risk factor for the evolution of several diseases. Herbal medicines, traditional medicinal herbs, and their extracts are widely utilized to treat and monitor HTN. Herbal components have been shown to help relax arteries and lower oxidative stress. The current study assesses the probable role of herbal plant extract Lagerstroemia speciosa (LS) in the LNAME induced HTN in rats. LNAME (50 mg/100 mL) in drinkable water was given to rats for five weeks. There was a significant upsurge in LNAME-treated hypertensive rats' blood pressure (BP). On treatment with LS, it ameliorates blood pressure. Further, LS also improved body weight, reduced heart weight, and heart hypertrophy. The NO/cGMP concentration was lowered along with a substantial upsurge in the level of glutathione and a decline in MDA level. The LS extract also reduced the inflammatory cytokine markers in the systemic circulation. In conclusion, thus, the extract of LS treatment can efficiently alleviate the BP, oxidative stress markers, and inflammation and improve NO/cGMP concentration in LNAME induced HTN in rats.


Assuntos
Hipertensão , Lagerstroemia , Plantas Medicinais , Ratos , Animais , Pressão Sanguínea , Estresse Oxidativo , Extratos Vegetais/farmacologia , Glutationa , Citocinas , Água
2.
BMC Complement Med Ther ; 22(1): 227, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028848

RESUMO

BACKGROUND: Data available support that ninety percent of male infertility cases are due to low sperm counts. There is a scarcity of data on the medicinal effects of cannabis on fertility. This study evaluated testicular function and sperm quality modulation with cannabis in rats. METHODOLOGY: Twenty-five male Wistar rats were randomly grouped into five: A, B, C, and D, each group have 5 rats. A (control): 0.2 ml 2% DMSO, B (vitamin C): 90 mg/kg body weight, C, D, and E were administered: 5 mg/kg, 10 mg/kg and 20 mg/kg body weight of ethanolic leaf extract of cannabis (ELEC) respectively. The rats were sacrificed 24 h after the last day of the 60 day oral administrations. Flavonoids were the predominant phytochemical present in the extract while quercetin, kemferol, silyman and gallic acid were identified. RESULTS: The results showed a significant improvement (p < 0.05) in sperm quality and a significant increase in the concentrations of follicle-stimulating hormone, luteinizing hormone, triglycerides, cholesterol, and total protein determination compared to the normal control. Similarly, there was a significant increase (p < 0.05) in the activities of acid phosphatase, alkaline phosphatase, and superoxide dismutase compared to the normal control. RAC-alpha serine/threonine-protein kinase (AKT1)-silymarin complexes (-8.30 kcal/mol) and androgen receptor (AR)-quercetin complexes (9.20 kcal/mol) had the highest affinity. CONCLUSION: The antioxidant effects of the flavonoids in the ethanolic extract of cannabis may have protected testicular and sperm cells from oxidative damage. Biochemical processes and histopathological morphology were preserved by cannabis. The docking prediction suggests that the bioactive principle of cannabis may activate the androgenic receptors. The androgenic receptor modulation may be attributed to silymarin and quercetin.


Assuntos
Cannabis , Silimarina , Animais , Peso Corporal , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais , Quercetina , Ratos , Ratos Wistar , Sementes , Espermatozoides
3.
Biomed Res Int ; 2022: 5746761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872865

RESUMO

A major paradigm shift in the field of nanobiotechnology is the invention of an eco-friendly, economical, and green approach for synthesis of metal nanoparticles. In the present study, we have synthesized gold nanoparticles (AuNPs) using aqueous extracts of marine brown seaweed Sargassum longifolium. The synthesized nanoparticle was subjected to characterization using different techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscope, scanning electron microscope, transmission electron microscope, and elemental dispersive X-ray diffraction. Further, the seaweed extract and the synthesized AuNPs were evaluated for its anticancer effect using MG-63 human osteosarcoma cells besides in vitro antioxidant effect. The formation of S. longifolium-mediated synthesis of gold nanoparticles was demonstrated by UV-Vis spectroscopy. Presence of elemental gold was confirmed by EDX analysis. TEM analysis demonstrated spherical morphology of the synthesized AuNPs and SEM analysis revealed the particle size to be in the range of 10-60 nm. The FTIR showed the presence of hydroxyl functional groups. The toxicity of S. longifolium extract and the synthesized AuNPs was tested using brine shrimp lethality assay at different concentrations with results showing both seaweed extract and AuNPs to be nontoxic. Both S. longifolium and AuNPs exhibited significant antioxidant activity by scavenging DPPH free radicals and H2O2 radicals. Significant antiproliferative effect was observed against MG-63 osteosarcoma cells. It was also shown that the seaweed extract and the AuNPs induced cytotoxicity in cell lines by mechanism of apoptosis. In conclusion, this study provided insight on AuNPs synthesized from S. longifolium as a potent antioxidant and anticancer agent.


Assuntos
Antioxidantes , Ouro , Nanopartículas Metálicas , Osteossarcoma , Alga Marinha , Antioxidantes/química , Antioxidantes/farmacologia , Ouro/química , Ouro/farmacologia , Química Verde/métodos , Humanos , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Osteossarcoma/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biomed Res Int ; 2022: 5778411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789647

RESUMO

Horsetail fern plant is botanically known as Equisetum arvense L., and it is a good source of phenolic flavonoids, phenolic acids, and compounds. Anticancer properties of hexane and chloroform extracts of the horsetail fern plant and their mechanisms involved in the anticancer activity on human hepatocarcinoma (HuH-7) cells were examined. Cytotoxicity was evaluated by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and NRU (neutral red uptake) assays. Other parameters such as oxidative stress and apoptosis in pretreated hexane and chloroform extracts of the horsetail fern plant were examined in HuH-7 cells. The observation showed that hexane and chloroform extract of the horsetail fern plant exhibited cytotoxicity against HuH-7 cells. The value of IC50-24 h of hexane and chloroform extract of the horsetail fern plant was determined as 199.0 µg/ml and 161.90 0 µg/ml for HuH-7 cells, respectively, and on the basis of IC50 value, three acute concentrations, viz., 75% of IC50, 50% of IC50, and 25% of IC50, were determined for further study. The lower dose of extracts hexane and chloroform extract of the horsetail fern plant did not show significant toxicity. Higher concentrations of extract induced significant antioxidant effects as well as apoptosis effects. However, exposure to hexane and chloroform extract of the horsetail fern plant upregulated the expression of Bax and p53 in HuH-7 cells. These data suggest that hexane and chloroform extract of the horsetail fern plant plays a significant role in the induction of toxicity via the regulation of oxidative stress in HuH-7 cells. This work may be useful for cancer chemotherapy.


Assuntos
Equisetum , Antioxidantes/farmacologia , Clorofórmio , Hexanos , Humanos , Extratos Vegetais/farmacologia
5.
BMC Complement Med Ther ; 22(1): 159, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705943

RESUMO

Croton macrostachyus is an important plant in traditional African medicine, widely utilized to treat a variety of diseases. In Kenya, HIV-infected patients use leaf and root decoctions of the plant as a cure for cough, back pain, bleeding, skin diseases, warts, pneumonia, and wounds. This study aimed to evaluate the anti-HIV activities and cytotoxic effects of extracts and chemical constituents isolated from C. macrostachyus. In our previous study we demonstrated that the hexane, CH2Cl2, ethyl acetate and methanol soluble fractions of a 1:1 v/v/ CH2Cl2/MeOH crude extracts of the leaves and stem bark of C. macrostachyus exhibited potent anti-HIV activities against HIV-1 with IC50 values ranging from 0.02-8.1 µg/mL and cytotoxicity effects against MT-4 cells ranging from IC50 = 0.58-174 µg/mL. Hence, hexane soluble extract of 1:1 v/v/ CH2Cl2/MeOH crude extract of the leaves of C. macrostachyus, that was more potent against HIV-1 at IC50 = 0.02 µg/mL was subjected to column chromatography leading to the isolation of 2-methoxy benzyl benzoate (1), lupenone (2), lupeol acetate (3), betulin (4), lupeol (5), sitosterol (6) and stigmasterol (7). Lupenone (2), lupeol acetate (3) and betulin (4) exhibited anti-HIV-1 inhibition at IC50 = 4.7 nM, 4.3 and 4.5 µg/mL respectively. The results obtained from this study support the potential of C. macrostachyus, as a source of anti-HIV constituents.


Assuntos
Fármacos Anti-HIV , Croton , Extratos Vegetais , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Croton/química , Hexanos/análise , Humanos , Medicinas Tradicionais Africanas , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
6.
Oxid Med Cell Longev ; 2022: 1646687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620573

RESUMO

The alarming rise in diabetes owing to drug resistance necessitates the implementation of prompt countermeasures in the treatment module of diabetes. Due to their unique physicochemical features, silver nanoparticles may have potential applications in the medical and pharmaceutical industries. Silver nanoparticles (AgNPs) were synthesized from the culture filtrate of Salmonella enterica (ATCC-14028). UV-Vis spectrophotometry, FTIR, SEM, and energy dispersive X-rays were used in the characterization of the nanoparticles. Transmission electron microscopy (TEM) revealed that AgNPs are spherical and highly scattered and vary in size from 7.18 nm to 13.24 nm. AgNP stability and protein loss were confirmed by thermogravimetric analysis (TGA) at different temperatures. The AgNPs had excellent antibacterial activity and a strong synergistic effect against methicillin-resistant bacteria Staphylococcus aureus (MRSA) ATCC-4330 and Streptococcus epidermis (MRSE) ATCC-51625. The DPPH experiment revealed that the AgNPs had high antioxidant activity. The antidiabetic assay revealed that these AgNPs had an IC50 for alpha-amylase of 428.60 µg/ml and an IC50 for alpha-glucosidase of 562.02 µg/ml. Flow cytometry analysis of Hep-2 cells treated with AgNPs (40 µg/ml) revealed higher expression of 2-NBDG glucose absorption (uptake) compared to control metformin. These AgNPs have promising antidiabetic properties and could be used in pharmaceuticals and biomedical industries.


Assuntos
Neoplasias Hepáticas , Nanopartículas Metálicas , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Desoxiglucose/análogos & derivados , Glucose , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química
7.
Biomed Res Int ; 2022: 5601531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615009

RESUMO

Schinus molle is a medicinal plant used as an anti-inflammatory and for rheumatic pain in the traditional medicine of Peru. On the other hand, Aedes aegypti is the main vector of several tropical diseases and the transmitter of yellow fever, chikungunya, malaria, dengue, and Zika virus. In this study, the aim was to investigate the antioxidant activity in vitro and the insecticidal activity in silico, in the presence of the mosquito juvenile hormone-binding protein (mJHBP) from Aedes aegypti, of the essential oil from S. molle leaves. The volatile phytochemicals were analyzed by gas chromatography-mass spectrometry (GC-MS), and the profile antioxidants were examined by DPPH, ABTS, and FRAP assays. The evaluation in silico was carried out on mJHBP (PDB: 5V13) with an insecticidal approach. The results revealed that EO presented as the main volatile components to alpha-phellandrene (32.68%), D-limonene (12.59%), and beta-phellandrene (12.24%). The antioxidant activity showed values for DPPH = 11.42 ± 0.08 µmol ET/g, ABTS = 134.88 ± 4.37 µmol ET/g, and FRAP = 65.16 ± 1.46 µmol ET/g. Regarding the insecticidal approach in silico, alpha-muurolene and gamma-cadinene had the best biding energy on mJHBP (ΔG = -9.7 kcal/mol), followed by beta-cadinene (ΔG = -9.5 kcal/mol). Additionally, the volatile components did not reveal antioxidant activity, and its potential insecticidal effect would be acting on mJHBP from A. aegypti.


Assuntos
Aedes , Anacardiaceae , Inseticidas , Óleos Voláteis , Anacardiaceae/química , Animais , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/análise , Larva , Mosquitos Vetores , Óleos Voláteis/química , Folhas de Planta/química
8.
Front Pharmacol ; 13: 845196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308202

RESUMO

Ethnopharmacological Relevance: The management of diabetes over the years has involved the use of herbal plants, which are now attracting interest. We assessed the antidiabetic properties of aqueous extract of C. purpureus shoots (AECPS) and the mechanism of action on pancreatic ß-cell dysfunction. Methods: This study was conducted using Thirty-six 36) male Wistar rats. The animals were divided into six equal groups (n = 6) and treatment was performed over 14 days. To induce diabetes in the rats, a single dose of 65 mg/kg body weight of alloxan was administered intraperitoneal along with 5% glucose. HPLC analysis was carried out to identified potential compounds in the extract. In vitro tests α-amylase, and α-glucosidase were analyzed. Body weight and fasting blood glucose (FBG) were measured. Biochemical parameters, such as serum insulin, liver glycogen, hexokinase, glucose-6-phosphate (G6P), fructose-1,6-bisphosphatase (F-1,6-BP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-ĸB), were analyzed. Additionally, mRNA expressions of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), B-cell lymphoma 2 (Bcl-2), and proliferating cell nuclear antigen (PCNA) were each evaluated. Results: This in vitro study showed inhibitory potency of Cenchrus purpureus extract (AECPS) as compared with the positive controls. AECPS showed a gradual decrease in alloxan-induced increases in FBG, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL-c), G6P, F-1,6-BP, malondialdehyde (MDA), IL-6, TNF-α, and NF-ĸB and increased alloxan-induced decreases in liver glycogen, hexokinase, and high density lipoprotein (HDL-c). The diabetic control group exhibited pancreatic dysfunction as evidenced by the reduction in serum insulin, homeostasis model assessment of ß-cell function (HOMA-ß), expressions of PI3K/AKT, Bcl-2, and PCNA combined with an elevation in homeostatic model assessment of insulin resistance (HOMA-IR). High performance liquid chromatography (HPLC) revealed 3-O-rutinoside, ellagic acid, catechin, rutin, and kaempferol in AECPS. Conclusion: AECPS showed efficient ameliorative actions against alloxan-induced pancreatic dysfunction, oxidative stress suppression as well as, inflammation, and apoptosis via the activation of PI3K/AKT signaling pathways.

9.
PLoS One ; 17(3): e0263917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313329

RESUMO

Liver performs number of critical physiological functions in human system. Intoxication of liver leads to accumulation of free radicals that eventually cause damage, fibrosis, cirrhosis and cancer. Carbon tetrachloride (CCl4) belongs to hepatotoxin is converted to a highly reactive free radical by cytochrome P450 enzymes that causes liver damage. Plant extracts derived quercetin has substantial role in hepatoprotection. This study highlights the possible mechanism by which quercetin plays significant role in hepatoprotection. HPLC analysis revealed the abundance of quercetin in the fruit extracts of Gynocardia odorata and Diospyros malabarica, were isolated, purified and subjected to liver function analysis on Wistar rats. Post quercetin treatment improved liver function parameters in the hepatotoxic Wistar rats by augmenting bilirubin content, SGOT and SGPT activity. Gene expression profile of quercetin treated rats revealed down regulation of HGF, TIMP1 and MMP2 expressed during CCl4 induction. In silico molecular mechanism prediction suggested that quercetin has a high affinity for cell signaling pathway proteins BCL-2, JAK2 and Cytochrome P450 Cyp2E1, which all play a significant role in CCl4 induced hepatotoxicity. In silico molecular docking and molecular dynamics simulation have shown that quercetin has a plausible affinity for major signaling proteins in liver. MMGBSA studies have revealed high binding of quercetin (ΔG) -41.48±11.02, -43.53±6.55 and -39.89±5.78 kcal/mol, with BCL-2, JAK2 and Cyp2E1, respectively which led to better stability of the quercetin bound protein complexes. Therefore, quercetin can act as potent inhibitor against CCl4 induced hepatic injury by regulating BCL-2, JAK2 and Cyp2E1.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diospyros , Malpighiales , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diospyros/metabolismo , Frutas/metabolismo , Fígado/metabolismo , Malpighiales/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quercetina/metabolismo , Quercetina/farmacologia , Ratos , Ratos Wistar
10.
Pak J Pharm Sci ; 35(1): 1-8, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221265

RESUMO

Antinociceptive activity of honey and Nigella sativa (N. sativa) oil are well known. Therefore, aim of this study was to investigate the antinociceptive effect of N. sativa oil and its concurrent administration with honey in rats. The tested animals were randomized into 5 groups: Group (1) Normal saline (0.2ml, p.o.); Group (2) N. sativa oil (1gm/kg, p.o.); Group (3) honey (1gm/kg, p.o.); Group (4) N. sativa oil (1gm/kg, p.o.) + honey (1gm/kg, p.o.): Group (5) pethidine (20mg/kg, S.C.) as positive standard. The antinociceptive activity was tested using radiant heat and tail immersion tests. Antioxidant potential was determined by using in-vitro antioxidant assays. Our findings showed that N. sativa oil and honey have antinociceptive effect, the antinociceptive effect appeared after 30 and 60min of administration and declined after 120 and 180 min. Combined administration of N. sativa oil with Honey increased the antinociceptive effect by 20 to 30% in all models. In addition, the antinociceptive effect of the combination reduced the time for onset of action as well as prolonged its duration of action. In conclusion, combined treatment of N. sativa oil with honey increased its antinociceptive activity, showed faster onset of action and prolonged its duration, the fact that can be utilized in the management of painful conditions in humans.


Assuntos
Analgésicos/uso terapêutico , Mel , Dor/tratamento farmacológico , Óleos de Plantas/uso terapêutico , Animais , Masculino , Fitoterapia , Ratos , Ratos Wistar
11.
J King Saud Univ Sci ; 34(3): 101867, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35125836

RESUMO

The emerged COVID-19 (SARS corona virus) pandemic leads to severe or fatal respiratory tract infections affecting millions of people worldwide since its outbreak. The situation needs the newer molecule to control the infections as the pandemic had very badly affected the health and socioeconomic conditions of human being. CoV-2 main protease is considered to be key enzyme by targeting which we can design or develop the drug candidate. The active fitting and binding of any molecule depends upon the shape and electrostatic properties of ligand complementary to the receptor site. In this study ZINC13 database, a drug like subset (13,195,609 molecules) was subjected to shape and electrostic based virtual screening (VROCS & EON software) and followed by molecular modelling studies using docking and molecular dynamics simulation. Further the drug ability of identified candidate was predicted by the SiteMap analysis. The best shape and electrostatic similarities were observed between ZINC19973962 and reference molecule. The Tamintoshape and Tanimotoelectrostatic was found to be 0.667 and 0.022 respectively. The molecule also displayed the identical binding pattern with docking score -7.964 and this interaction was further validated by the molecular dynamics simulations. The RMSD & RMSF values were found to be 1.5 Å and1.8 Å respectively suggesting the stability of complex and very low fluctuation in ligand-protein complex over the entire MD simulation run. SiteMap analysis showed the identical Dscore of reference and identified HIT that indicated the molecule ZINC19973962 would be the promising druggable candidate against COVID main protease enzyme and can be used as lead molecule for the development of anti-COVID molecule.

12.
Comb Chem High Throughput Screen ; 25(1): 103-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33280592

RESUMO

BACKGROUND: Mercuric chloride (HgCl2) severely impairs the central nervous system when humans are exposed to it. AIMS: We investigated the neuroprotective efficiency of Ziziphus spina-christi leaf extract (ZSCLE) on HgCl2-mediated cortical deficits. METHODS: Twenty-eight rats were distributed equally into four groups: the control, ZSCLE-treated (300 mg/kg), HgCl2-treated (0.4 mg/kg), and ZSCLE+HgCl2-treated groups. Animals received their treatments for 28 days. RESULTS: Supplementation with ZSCLE after HgCl2 exposure prevented the deposition of mercury in the cortical slices. It also lowered malondialdehyde levels and nitrite and nitrate formation, elevated glutathione levels, activated its associated-antioxidant enzymes, glutathione reductase, and glutathione peroxidase, and upregulated the transcription of catalase and superoxide dismutase and their activities were accordingly increased. Moreover, ZSCLE activated the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 when compared with the HgCl2 group. Notably, post-treatment with ZSCLE increased the activity of acetylcholinesterase and ameliorated the histopathological changes associated with HgCl2 exposure. Furthermore, ZSCLE blocked cortical inflammation, as observed by the lowered mRNA expression and protein levels of interleukin-1 beta and tumor necrosis factor-alpha, as well as decreased mRNA expression of inducible nitric oxide synthase. In addition, ZSCLE decreased neuron loss by preventing apoptosis in the cortical tissue upon HgCl2 intoxication. CONCLUSION: Based on the obtained findings, we suggest that ZSCLE supplementation could be applied as a neuroprotective agent to decrease neuron damage following HgCl2 toxicity.


Assuntos
Cloreto de Mercúrio , Ziziphus , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacologia , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ziziphus/metabolismo
13.
Chemosphere ; 287(Pt 4): 132406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597649

RESUMO

Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.


Assuntos
Arsênio , Helianthus , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Fósforo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
14.
Sci Total Environ ; 768: 144781, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33444861

RESUMO

Aflatoxins are a common food contaminant of global concern. Aflatoxin B1 (AFB1) intoxication is associated with serious health hazards. Recently, fucoidan (FUC) has gained much attention from pharmaceutical industry due to its promising therapeutic effects. The impacts of FUC on AFB1-induced liver and kidney injures have not been sufficiently addressed. This research was conducted to evaluate the ameliorative effect of FUC in AFB1-induced hepatorenal toxicity model in rats over 14 days. Five groups were assigned; control, FUC (200 mg/kg/day, orally), AFB1 (50 µg/kg, i.p.), and AFB1 plus a low or high dose of FUC. AFB1 induced marked hepatorenal injury elucidated by substantial alterations in biochemical tests and histological pictures. The oxidative distress instigated by AFB1 enhanced production of malondialdehyde (MDA) and nitric oxide (NO) along with reduction in the reduced-glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. DNA damage in the liver and kidney tissues has been demonstrated by overexpression of proliferating cell nuclear antigen (PCNA). Unambiguously, FUC consumption alleviates the AFB1-induced mitochondrial dysfunction, oxidative harm, and apoptosis. These ameliorated effects are proposed to be attributed to fucoidan's antioxidant and anti-apoptotic activities. Our results recommend FUC supplementation to food because it exerts both preventive and therapeutic effects against AFB1-induced toxicity.


Assuntos
Aflatoxina B1 , Estresse Oxidativo , Aflatoxina B1/toxicidade , Animais , Antioxidantes/metabolismo , Dano ao DNA , Suplementos Nutricionais , Fígado/metabolismo , Polissacarídeos , Ratos
15.
Environ Sci Pollut Res Int ; 28(14): 18134-18145, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405105

RESUMO

Alzheimer's disease (AD) is characterized by alterations in monoamines, oxidative stress, and metabolic dysfunctions. We aim to assess the therapeutic impacts of roots or leaf extract from Urtica dioica (UD; stinging nettle) against scopolamine (SCOP)-induced memory dysfunction, amnesia, and oxidative stress in rats. Spatial memory was assessed by Y maze test. Tissue analyses of norepinephrine (NE), dopamine (DA), serotonin (5-HT), malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH, GSSG), AMP, ADP, and ATP were assessed by HPLC. mRNA levels of Tau and Hsp70 were estimated by PCR. UD extracts particularly nettle root (NR) significantly normalized the SCOP-induced memory deficits even more potent than sermion (SR) and donepezil (DON). Similarly, NR had potent therapeutic impacts on the levels of cortical and hippocampal monoamines e.g. DA, NE, and 5-HT. SCOP induced a dramatic oxidative stress as measured by MDA, NO, and GSSG levels; however, UD extracts showed significant anti-oxidative stress impacts. Additionally, UD extracts restored ATP levels and reduced the levels of AMP and ADP compared to SCOP-treated rats. Furthermore, cortical Tau and hippocampal Hsp70 were modulated by UD extracts particularly NR compared to the SCOP group. In conclusion, UD extracts particularly roots have potential therapeutic impacts against SCOP-induced neuroinflammatory and/or Alzheimer-like phenotype in rats.


Assuntos
Urtica dioica , Animais , Malondialdeído , Estresse Oxidativo , Extratos Vegetais , Ratos , Escopolamina
16.
Environ Sci Pollut Res Int ; 28(14): 17482-17494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394435

RESUMO

Heavy metal contamination including mercury (Hg) has become one of the most serious environmental problems facing humans and other living organisms. Here, the hepatoprotective effects of Z. spina-christi leaf extract (ZCE) against inorganic mercury salt (mercuric chloride; HgCl2)-induced hepatotoxicity model was investigated in rats. Mercury concentration, liver function markers, oxidative stress markers, inflammation, cell death indicators, and histopathology were assessed. ZCE protected against HgCl2-induced hepatotoxicity, decreased Hg concentration, lipid peroxidation, and nitric oxide, increased glutathione, superoxide dismutase, catalase, and glutathione recycling enzymes (peroxidase and reductase), and upregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expression in HgCl2-intoxicated rat hepatic tissue. Nrf2 downstream gene and heme oxygenase-1 were also upregulated, confirming that hepatoprotection by ZCE against HgCl2-induced liver damage involved activation of the Nrf2/antioxidant response element pathway. ZCE also decreased the expression and production of pro-inflammatory cytokines and pro-apoptotic proteins and increased anti-apoptotic protein Bcl-2. Immunohistochemical analysis of liver tissues of HgCl2-treated rats confirmed the alternations of apoptotic-related protein expression. Our data demonstrated that post-administration of ZCE attenuated HgCl2-induced liver damage by activating the Nrf2/HO-1 signaling pathway. Therefore, administering this extract may be a novel therapeutic strategy for inorganic mercury intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ziziphus , Animais , Antioxidantes/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Masculino , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ziziphus/metabolismo
17.
Environ Sci Pollut Res Int ; 27(32): 40525-40536, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666453

RESUMO

Diabetes mellitus (DM) is one of the most dangerous incurable diseases that affects a large number of people worldwide. Artemisia species have various protective activities and are widely used for the control of diabetes in folkloric medicine. Therefore, the current study was designed to illustrate the protective effect of oral administration of Artemisia judaica extract (AjE) against hepatorenal damage in a high-fat diet/streptozotocin (HFD/STZ) rat model of hyperlipidemia and hyperglycemia. Animals were divided into five groups-control, AjE, HFD/STZ, HFD/STZ-AjE (300 mg/kg), and HFD/STZ-MET (100 mg/kg)-and treated daily for 28 days. The results revealed that STZ-injected rats showed marked hyperglycemia and hypoinsulinemia in addition to high levels of cholesterol, triglycerides, and low- and high-density lipoproteins compared to control rats. Significant elevations in hepatic (AST and ALT) and renal (urea, uric acid, and creatinine) function markers were observed in the serum of diabetic rats. Additionally, STZ injection caused remarkable elevations in lipid peroxidation and nitric oxide levels as well as suppression of antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione). Marked elevations in TNF-α and Bax levels with a decline in Bcl-2 levels were detected after STZ injection. Furthermore, TGF-ß1 expression levels were significantly upregulated in the liver and kidney tissues. Rats that received AjE or MET showed significant improvement in most of the aforementioned parameters, and the protective efficacy was higher for AjE than for MET. Histopathological screening confirmed the biochemical findings. Conclusively, our results illustrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and antiapoptotic activities of AjE against hepatorenal injury in HFD/STZ-induced diabetes.


Assuntos
Artemisia , Diabetes Mellitus Experimental , Metformina , Animais , Antioxidantes , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Fígado , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Estreptozocina
18.
Environ Sci Pollut Res Int ; 27(30): 37709-37717, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32608003

RESUMO

Acrylamide (AA), an industrial monomer, may cause multi-organ toxicity through induction of oxidative stress and inflammation. The antioxidant properties of thymoquinone (TQ), an active constituent of Nigella sativa, have been established before. The aim of the current study was to assess the protective effects of TQ against AA-induced toxicity in rats. Forty-eight male Wistar rats were divided into six groups each of eight rats. The first group acted as a negative control and received normal saline. Groups II and III were administered TQ orally at doses of 10 and 20 mg/kg b.wt., respectively, for 21 days. The four group received AA (20 mg/kg b.wt.) for 14 days. The five and six groups were given TQ at either dose for 21 days, starting seven days before AA supplementation (for 14 days). Acrylamide intoxication was associated with significant (p < 0.05) increases in serum levels of liver injury biomarkers (alanine transferase, aspartate transferase, and alkaline phosphatase), renal function products (urea, creatinine), DNA oxidative damage biomarker (8-oxo-2'-deoxyguanosine), and pro-inflammatory biomarkers (interleukin-1ß, interleukin-6, and tumor necrosis factor-α). Moreover, AA intoxication was associated with increased lipid peroxidation and nitric oxide levels, while reduced glutathione concentration and activities of glutathione peroxidase, superoxide dismutase, and catalase in the liver, kidney, and brain. TQ administration normalized AA-induced changes in most serum parameters and enhanced the antioxidant capacity in the liver, kidney, and brain tissues in a dose-dependent manner. In conclusion, the current experiment showed that TQ exerted protective and antioxidant activities against AA-induced toxicity in mice.


Assuntos
Acrilamida , Benzoquinonas , Animais , Antioxidantes , Encéfalo , Glutationa , Rim , Fígado , Masculino , Camundongos , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase
19.
Artigo em Inglês | MEDLINE | ID: mdl-32708934

RESUMO

Tannery wastewater mainly comes from leather industries. It has high organic load, high salinity, and many other pollutants, including chromium (Cr). Tannery wastewater is generally used for crop irrigation in some areas of Pakistan and worldwide, due to the low availability of good quality of irrigation water. As tannery wastewater has many nutrients in it, its lower concentration benefits the plant growth, but at a higher concentration, it damages the plants. Chromium in tannery wastewater accumulates in plants, and causes stress at physiological and biochemical levels. In recent times, the role of micronutrient-amino acid chelated compounds has been found to be helpful in reducing abiotic stress in plants. In our present study, we used lysine chelated zinc (Zn-lys) as foliar application on maize (Zea mays L.), growing in different concentrations of tannery wastewater. Zinc (Zn) is required by plants for growth, and lysine is an essential amino acid. Maize plants were grown in tannery wastewater in four concentrations (0, 25%, 50%, and 100%) and Zn-lys was applied as a foliar spray in three concentrations (0 mM, 12.5 mM, and 25 mM) during plant growth. Plants were cautiously harvested right after 6 weeks of treatment. Foliar spray of Zn-lys on maize increased the biomass and improved the plant growth. Photosynthetic pigments such as total chlorophyll, chlorophyll a, chlorophyll b and contents of carotenoids also increased with Zn-lys application. In contrast to control plants, the hydrogen peroxide (H2O2) contents were increased up to 12%, 50%, and 68% in leaves, as well as 16%, 51% and 89% in roots at 25%, 50%, and 100% tannery water application, respectively, without Zn-lys treatments. Zn-lys significantly reduced the damages caused by oxidative stress in maize plant by decreasing the overproduction of H2O2 and malondialdehyde (MDA) in maize that were produced, due to the application of high amount of tannery wastewater alone. The total free amino acids and soluble protein decreased by 10%, 31% and 64% and 18%, 61% and 122% at 25%, 50% and 100% tannery water treatment. Zn-lys application increased the amino acids production and antioxidant activities in maize plants. Zn contents increased, and Cr contents decreased, in different parts of plants with Zn-lys application. Overall, a high concentration of tannery wastewater adversely affected the plant growth, but the supplementation of Zn-lys assertively affected the plant growth and enhanced the nutritional quality, by enhancing Zn and decreasing Cr levels in plants simultaneously irrigated with tannery wastewater.


Assuntos
Poluentes do Solo , Zea mays , Antioxidantes , Clorofila , Clorofila A , Peróxido de Hidrogênio , Lisina , Paquistão , Folhas de Planta/química , Poluentes do Solo/análise , Águas Residuárias/análise , Zinco
20.
Environ Sci Pollut Res Int ; 27(27): 33723-33731, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529628

RESUMO

Lead (Pb) is an environmental toxicant; its consumption can induce renal deficits. In this study, we explored the possible protective efficiency of Moringa oleifera extract (MOE) against lead acetate (PbAc)-mediated reprotoxicity. Four experimental groups of seven rats each were used: control, PbAc, MOE, and MOE+PbAc groups. All groups were given their respective treatment for 4 weeks. PbAc impaired the oxidative/antioxidative balance in the renal tissue, as shown by the decreased antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) and increased oxidants (lipid peroxidation and nitric oxide). Additionally, PbAc enhanced the progression of kidney inflammation by increasing tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B associated with upregulation of inducible nitric oxide synthase. Moreover, a dysregulation in the apoptotic-regulating proteins (Bax, caspase-3, and Bcl2) were recorded upon PbAc exposure. Remarkably, MOE oral administration restored redox homeostasis, suppressed the inflammatory and apoptotic responses in the kidney tissue. Our findings point out that MOE could be used as an alternative remedy to overcome the adverse effects of Pb exposure, which may be due to its potent antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes/farmacologia , Moringa oleifera , Compostos Organometálicos , Acetatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Chumbo/toxicidade , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA