Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res ; 1657: 347-354, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057450

RESUMO

Breathing oxygen at sufficiently elevated pressures can trigger epileptiform seizures. Therefore, we tested the hypothesis that pre-treatment with FDA-approved antiepileptic drugs could prevent seizure onset in hyperoxia at 5 atmospheres absolute. We selected drugs from two putative functional categories, Na+-channel antagonists and GABA enhancers, each administered intraperitoneally at four doses in separate groups of C57BL/6 mice. The drugs varied in efficacy at the doses used. Of the five tested Na+-channel antagonists, carbamazepine and lamotrigine more than tripled seizure latency compared to values seen in vehicle controls. Primidone, zonisamide and oxcarbazepine were less effective. Of the four GABA reuptake inhibitors, tiagabine and vigabatrin also increased seizure latency by more than three times control values; valproic acid was less effective, and the GABA synthesis promoter gabapentin was intermediate in effectiveness. We infer that Na+-channel function and GABA neurotransmission may be critical targets in the pathophysiology of CNS O2 toxicity. Because these essential components of neuronal excitation and inhibition are also implicated in the pathogenesis of other seizure disorders, including generalized epilepsy, we propose that, at some level, common pathways are involved in these pathologies, although the initiating insults differ. Furthermore, hyperoxic exposures are not known to cause the spontaneously-recurring seizures that characterize true clinical epilepsy. Nonetheless, experimental studies of hyperbaric oxygen toxicity could provide new insights into molecular mechanisms of seizure disorders of various etiologies. In addition, the neuropathology of hyperbaric oxygen is particularly relevant to the hypothesis held by some investigators that oxidative stress is an etiological factor in clinical epilepsies.


Assuntos
Anticonvulsivantes/farmacologia , Modelos Animais de Doenças , Oxigenoterapia Hiperbárica , Convulsões/prevenção & controle , Animais , Relação Dose-Resposta a Droga , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Inibidores da Captação de GABA/farmacologia , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Convulsões/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
J Appl Physiol (1985) ; 119(11): 1282-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26338456

RESUMO

The endogenous vasodilator and signaling molecule nitric oxide has been implicated in cerebral hyperemia, sympathoexcitation, and seizures induced by hyperbaric oxygen (HBO2) at or above 3 atmospheres absolute (ATA). It is unknown whether these events in the onset of central nervous system oxygen toxicity originate within specific brain structures and whether blood flow is diverted to the brain from peripheral organs with high basal flow, such as the kidney. To explore these questions, total and regional cerebral blood flow (CBF) were measured in brain structures of the central autonomic network in anesthetized rats in HBO2 at 6 ATA. Electroencephalogram (EEG) recordings, cardiovascular hemodynamics, and renal blood flow (RBF) were also monitored. As expected, mean arterial blood pressure and total and regional CBF increased preceding EEG spikes while RBF was unaltered. Of the brain structures examined, the earliest rise in CBF occurred in the striatum, suggesting increased neuronal activation. Continuous unilateral or bilateral striatal infusion of the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester attenuated CBF responses in that structure, but global EEG discharges persisted and did not differ from controls. Our novel findings indicate that: 1) cerebral hyperemia in extreme HBO2 in rats does not occur at the expense of renal perfusion, highlighting the remarkable autoregulatory capability of the kidney, and 2) in spite of a sentinel increase in striatal blood flow, additional brain structure(s) likely govern the pathogenesis of HBO2-induced seizures because EEG discharge latency was unchanged by local blockade of striatal nitric oxide production and concomitant hyperemia.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Hiperóxia/fisiopatologia , Neostriado/irrigação sanguínea , Neostriado/metabolismo , Óxido Nítrico/biossíntese , Convulsões/fisiopatologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Hemodinâmica/fisiologia , Oxigenoterapia Hiperbárica , Hiperóxia/complicações , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Sprague-Dawley , Circulação Renal , Convulsões/etiologia
3.
J Appl Physiol (1985) ; 117(5): 525-34, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24994889

RESUMO

Unexplained adjustments in baroreflex sensitivity occur in conjunction with exposures to potentially toxic levels of hyperbaric oxygen. To investigate this, we monitored central nervous system, autonomic and cardiovascular responses in conscious and anesthetized rats exposed to hyperbaric oxygen at 5 and 6 atmospheres absolute, respectively. We observed two contrasting phases associated with time-dependent alterations in the functional state of the arterial baroreflex. The first phase, which conferred protection against potentially neurotoxic doses of oxygen, was concurrent with an increase in baroreflex sensitivity and included decreases in cerebral blood flow, heart rate, cardiac output, and sympathetic drive. The second phase was characterized by baroreflex impairment, cerebral hyperemia, spiking on the electroencephalogram, increased sympathetic drive, parasympatholysis, and pulmonary injury. Complete arterial baroreceptor deafferentation abolished the initial protective response, whereas electrical stimulation of intact arterial baroreceptor afferents prolonged it. We concluded that increased afferent traffic attributable to arterial baroreflex activation delays the development of excessive central excitation and seizures. Baroreflex inactivation or impairment removes this protection, and seizures may follow. Finally, electrical stimulation of intact baroreceptor afferents extends the normal delay in seizure development. These findings reveal that the autonomic nervous system is a powerful determinant of susceptibility to sympathetic hyperactivation and seizures in hyperbaric oxygen and the ensuing neurogenic pulmonary injury.


Assuntos
Encéfalo/fisiologia , Oxigenoterapia Hiperbárica/efeitos adversos , Neurônios Aferentes/fisiologia , Oxigênio/toxicidade , Pressorreceptores/fisiologia , Animais , Estimulação Elétrica , Hemodinâmica/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
4.
J Appl Physiol (1985) ; 115(6): 819-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23823147

RESUMO

The cardiovascular system responds to hyperbaric hyperoxia (HBO2) with vasoconstriction, hypertension, bradycardia, and reduced cardiac output (CO). We tested the hypothesis that these responses are linked by a common mechanism-activation of the arterial baroreflex. Baroreflex function in HBO2 was assessed in anesthetized and conscious rats after deafferentation of aortic or carotid baroreceptors or both. Cardiovascular and autonomic responses to HBO2 in these animals were compared with those in intact animals at 2.5 ATA for conscious rats and at 3 ATA for anesthetized rats. During O2 compression, hypertension was greater after aortic or carotid baroreceptor deafferentation and was significantly more severe if these procedures were combined. Similarly, the hyperoxic bradycardia observed in intact animals was diminished after aortic or carotid baroreceptor deafferentation and replaced by a slight tachycardia after complete baroreceptor deafferentation. We found that hypertension, bradycardia, and reduced CO--the initial cardiovascular responses to moderate levels of HBO2--are coordinated through a baroreflex-mediated mechanism initiated by HBO2-induced vasoconstriction. Furthermore, we have shown that baroreceptor activation in HBO2 inhibits sympathetic outflow and can partially reverse an O2-dependent increase in arterial pressure.


Assuntos
Barorreflexo/fisiologia , Sistema Cardiovascular/fisiopatologia , Oxigenoterapia Hiperbárica/efeitos adversos , Animais , Pressão Arterial/fisiologia , Denervação Autônoma , Sistema Nervoso Autônomo/fisiopatologia , Bradicardia/etiologia , Bradicardia/fisiopatologia , Hemodinâmica , Hiperóxia/complicações , Hiperóxia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Vasoconstrição/fisiologia
5.
J Appl Physiol (1985) ; 112(11): 1814-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442027

RESUMO

In hyperbaric oxygen (HBO(2)) at or above 3 atmospheres absolute (ATA), autonomic pathways link central nervous system (CNS) oxygen toxicity to pulmonary damage, possibly through a paradoxical and poorly characterized relationship between central nitric oxide production and sympathetic outflow. To investigate this possibility, we assessed sympathetic discharges, catecholamine release, cardiopulmonary hemodynamics, and lung damage in rats exposed to oxygen at 5 or 6 ATA. Before HBO(2) exposure, either a selective inhibitor of neuronal nitric oxide synthase (NOS) or a nonselective NOS inhibitor was injected directly into the cerebral ventricles to minimize effects on the lung, heart, and peripheral circulation. Experiments were performed on both anesthetized and conscious rats to differentiate responses to HBO(2) from the effects of anesthesia. EEG spikes, markers of CNS toxicity in anesthetized animals, were approximately four times as likely to develop in control rats than in animals with central NOS inhibition. In inhibitor-treated animals, autonomic discharges, cardiovascular pressures, catecholamine release, and cerebral blood flow all remained below baseline throughout exposure to HBO(2). In control animals, however, initial declines in these parameters were followed by significant increases above their baselines. In awake animals, central NOS inhibition significantly decreased the incidence of clonic-tonic convulsions or delayed their onset, compared with controls. The novel findings of this study are that NO produced by nNOS in the periventricular regions of the brain plays a critical role in the events leading to both CNS toxicity in HBO(2) and to the associated sympathetic hyperactivation involved in pulmonary injury.


Assuntos
Fibras Adrenérgicas/fisiologia , Sistema Nervoso Central/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Óxido Nítrico/fisiologia , Oxigênio/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fibras Adrenérgicas/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Oxigenoterapia Hiperbárica/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Oxigênio/administração & dosagem , Ratos , Ratos Sprague-Dawley
6.
Am J Physiol Lung Cell Mol Physiol ; 300(1): L102-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971806

RESUMO

Breathing hyperbaric oxygen (HBO2), particularly at pressures above 3 atmospheres absolute, can cause acute pulmonary injury that is more severe if signs of central nervous system toxicity occur. This is consistent with the activation of an autonomic link between the brain and the lung, leading to acute pulmonary oxygen toxicity. This pulmonary damage is characterized by leakage of fluid, protein, and red blood cells into the alveoli, compatible with hydrostatic injury due to pulmonary hypertension, left atrial hypertension, or both. Until now, however, central hemodynamic parameters and autonomic activity have not been studied concurrently in HBO2, so any hypothetical connections between the two have remained untested. Therefore, we performed experiments using rats in which cerebral blood flow, electroencephalographic activity, cardiopulmonary hemodynamics, and autonomic traffic were measured in HBO2 at 5 and 6 atmospheres absolute. In some animals, autonomic pathways were disrupted pharmacologically or surgically. Our findings indicate that pulmonary damage in HBO2 is caused by an abrupt and significant increase in pulmonary vascular pressure, sufficient to produce barotrauma in capillaries. Specifically, extreme HBO2 exposures produce massive sympathetic outflow from the central nervous system that depresses left ventricular function, resulting in acute left atrial and pulmonary hypertension. We attribute these effects on the heart and on the pulmonary vasculature to HBO2-mediated central sympathetic excitation and catecholamine release that disturbs the normal equilibrium between excitatory and inhibitory activity in the autonomic nervous system.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Oxigenoterapia Hiperbárica/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Oxigênio/toxicidade , Animais , Eletroencefalografia/efeitos dos fármacos , Coração/efeitos dos fármacos , Parada Cardíaca/induzido quimicamente , Hemodinâmica/efeitos dos fármacos , Oxigenoterapia Hiperbárica/métodos , Pulmão/efeitos dos fármacos , Circulação Pulmonar/efeitos dos fármacos , Ratos , Sistema Nervoso Simpático/efeitos dos fármacos
7.
J Appl Physiol (1985) ; 106(4): 1234-42, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19179645

RESUMO

Oxygen is a potent cerebral vasoconstrictor, but excessive exposure to hyperbaric oxygen (HBO(2)) can reverse this vasoconstriction by stimulating brain nitric oxide (NO) production, which increases cerebral blood flow (CBF)-a predictor of O(2) convulsions. We tested the hypothesis that phosphodiesterase (PDE)-5 blockers, specifically sildenafil and tadalafil, increase CBF in HBO(2) and accelerate seizure development. To estimate changes in cerebrovascular responses to hyperoxia, CBF was measured by hydrogen clearance in anesthetized rats, either control animals or those pretreated with one of these blockers, with the NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME), with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), or with a blocker combined with l-NAME. Animals were exposed to 30% O(2) at 1 atm absolute (ATA) ("air") or to 100% O(2) at 4 or 6 ATA. EEG spikes indicated central nervous system CNS O(2) toxicity. The effects of PDE-5 blockade varied as a positive function of ambient Po(2). In air, CBF did not increase significantly, except after pretreatment with SNAP. However, at 6 ATA O(2), mean values for CBF increased and values for seizure latency decreased, both significantly; pretreatment with l-NAME abolished these effects. Conscious rats treated with sildenafil before HBO(2) were also more susceptible to CNS O(2) toxicity, as demonstrated by significantly shortened convulsive latency. Decreases in regional CBF reflect net vasoconstriction in the brain regions studied, since mean arterial pressures remained constant or increased throughout. Thus PDE-5 blockers oppose the protective vasoconstriction that is the initial response to hyperbaric hyperoxia, decreasing the safety of HBO(2) by hastening onset of CNS O(2) toxicity.


Assuntos
Oxigenoterapia Hiperbárica , Hiperóxia/fisiopatologia , Inibidores da Fosfodiesterase 5 , Inibidores de Fosfodiesterase/farmacologia , Convulsões/induzido quimicamente , Vasoconstrição/efeitos dos fármacos , Anestesia , Animais , Gasometria , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , GMP Cíclico/fisiologia , Guanilato Ciclase/fisiologia , Hiperóxia/tratamento farmacológico , Infusões Intravenosas , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Inibidores de Fosfodiesterase/administração & dosagem , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia , Transdução de Sinais/fisiologia
8.
J Appl Physiol (1985) ; 106(2): 662-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18845774

RESUMO

Recent investigations have elucidated some of the diverse roles played by reactive oxygen and nitrogen species in events that lead to oxygen toxicity and defend against it. The focus of this review is on toxic and protective mechanisms in hyperoxia that have been investigated in our laboratories, with an emphasis on interactions of nitric oxide (NO) with other endogenous chemical species and with different physiological systems. It is now emerging from these studies that the anatomical localization of NO release, which depends, in part, on whether the oxygen exposure is normobaric or hyperbaric, strongly influences whether toxicity emerges and what form it takes, for example, acute lung injury, central nervous system excitation, or both. Spatial effects also contribute to differences in the susceptibility of different cells in organs at risk from hyperoxia, especially in the brain and lungs. As additional nodes are identified in this interactive network of toxic and protective responses, future advances may open up the possibility of novel pharmacological interventions to extend both the time and partial pressures of oxygen exposures that can be safely tolerated. The implications of a better understanding of the mechanisms by which NO contributes to central nervous system oxygen toxicity may include new insights into the pathogenesis of seizures of diverse etiologies. Likewise, improved knowledge of NO-based mechanisms of pulmonary oxygen toxicity may enhance our understanding of other types of lung injury associated with oxidative or nitrosative stress.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Encéfalo/metabolismo , Hiperóxia/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/toxicidade , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Antioxidantes/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Mergulho/efeitos adversos , Humanos , Oxigenoterapia Hiperbárica/efeitos adversos , Hiperóxia/etiologia , Hiperóxia/fisiopatologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L984-90, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18326824

RESUMO

Reactive species of oxygen and nitrogen have been collectively implicated in pulmonary oxygen toxicity, but the contributions of specific molecules are unknown. Therefore, we assessed the roles of several reactive species, particularly nitric oxide, in pulmonary injury by exposing wild-type mice and seven groups of genetically altered mice to >98% O2 at 1, 3, or 4 atmospheres absolute. Genetically altered animals included knockouts lacking either neuronal nitric oxide synthase (nNOS(-/-)), endothelial nitric oxide synthase (eNOS(-/-)), inducible nitric oxide synthase (iNOS(-/-)), extracellular superoxide dismutase (SOD3(-/-)), or glutathione peroxidase 1 (GPx1(-/-)), as well as two transgenic variants (S1179A and S1179D) having altered eNOS activities. We confirmed our earlier finding that normobaric hyperoxia (NBO2) and hyperbaric hyperoxia (HBO2) result in at least two distinct but overlapping patterns of pulmonary injury. Our new findings are that the role of nitric oxide in the pulmonary pathophysiology of hyperoxia depends both on the specific NOS isozyme that is its source and on the level of hyperoxia. Thus, iNOS predominates in the etiology of lung injury in NBO2, and SOD3 provides an important defense. But in HBO2, nNOS is a major contributor to pulmonary injury, whereas eNOS is protective. In addition, we demonstrated that nitric oxide derived from nNOS is involved in a neurogenic mechanism of HBO2-induced lung injury that is linked to central nervous system oxygen toxicity through adrenergic/cholinergic pathways.


Assuntos
Hiperóxia/metabolismo , Pneumopatias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Comportamento Animal , Glutationa Peroxidase/metabolismo , Oxigenoterapia Hiperbárica , Hiperóxia/patologia , Pulmão/enzimologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III , Oxigênio/toxicidade , Oxiemoglobinas/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase GPX1
10.
J Cereb Blood Flow Metab ; 25(10): 1288-300, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15789033

RESUMO

Hyperbaric oxygen (HBO(2)) increases oxygen tension (PO(2)) in blood but reduces blood flow by means of O(2)-induced vasoconstriction. Here we report the first quantitative evaluation of these opposing effects on tissue PO(2) in brain, using anesthetized rats exposed to HBO(2) at 2 to 6 atmospheres absolute (ATA). We assessed the contribution of regional cerebral blood flow (rCBF) to brain PO(2) as inspired PO(2) (PiO(2)) exceeds 1 ATA. We measured rCBF and local PO(2) simultaneously in striatum using collocated platinum electrodes. Cerebral blood flow was computed from H(2) clearance curves in vivo and PO(2) from electrodes calibrated in vitro, before and after insertion. Arterial PCO(2) was controlled, and body temperature, blood pressure, and EEG were monitored. Scatter plots of rCBF versus PO(2) were nonlinear (R(2)=0.75) for rats breathing room air but nearly linear (R(2)=0.88-0.91) for O(2) at 2 to 6 ATA. The contribution of rCBF to brain PO(2) was estimated at constant inspired PO(2), by increasing rCBF with acetazolamide (AZA) or decreasing it with N-nitro-L-arginine methyl ester (L-NAME). At basal rCBF (78 mL/100 g min), local PO(2) increased 7- to 33-fold at 2 to 6 ATA, compared with room air. A doubling of rCBF increased striatal PO(2) not quite two-fold in rats breathing room air but 13- to 64-fold in those breathing HBO(2) at 2 to 6 ATA. These findings support our hypothesis that HBO(2) increases PO(2) in brain in direct proportion to rCBF.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular , Oxigenoterapia Hiperbárica , Oxigênio/análise , Fluxo Sanguíneo Regional , Animais , Corpo Estriado/irrigação sanguínea , Corpo Estriado/química , Hidrogênio/análise , Masculino , Pressão Parcial , Ratos , Ratos Sprague-Dawley , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA