Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Neurosci ; 43(2): 123-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20635164

RESUMO

Both the neuropeptide Y (NPY) and the leptin systems have been shown to be important central mediators of bone metabolism. However, the interaction between these two systems is complex and not fully understood. Here, we show that a unique interaction exists between Y2 and Y4 receptors in the regulation of bone homeostasis that is not evident when combined with lack of Y1 signalling. Despite the hypoleptinaemia shown in male Y2/Y4 double knockout (Y2⁻/⁻ Y4⁻/⁻) mice, when on the leptin-deficient ob/ob background, these mice display reduced cancellous bone mass. However, combined Y2/Y4 deletion enhances the effect of leptin deficiency on the cortical bone compartment. By replicating the enhanced central NPY expression evident in ob/ob mice using virally mediated overexpression of NPY in the hypothalamus of Y receptor knockout mice, we demonstrate that Y2⁻/⁻ Y4⁻/⁻ mice have an exaggerated response to the anti-osteogenic effects of elevated hypothalamic NPY in both cancellous and cortical bone and that this effect appears to be dependent on Y1 receptor signalling. This study highlights the complex interaction between Y receptors in the control of bone mass. Moreover, it suggests that the reduction in cortical bone observed in the absence of leptin is due to the anti-osteogenic effect of elevated hypothalamic NPY levels.


Assuntos
Osso e Ossos/metabolismo , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Homeostase , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Receptores de Neuropeptídeo Y/genética
2.
PLoS One ; 4(12): e8415, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20027231

RESUMO

Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/-)) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/-) mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.


Assuntos
Peso Corporal/fisiologia , Osso e Ossos/anatomia & histologia , Neuropeptídeo Y/deficiência , Adiposidade , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Neuropeptídeo Y/metabolismo , Tamanho do Órgão , Osteogênese , Fenótipo , Transdução de Sinais
3.
J Biol Chem ; 282(26): 19092-102, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17491016

RESUMO

The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Fatores Etários , Animais , Comportamento Animal/fisiologia , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Células Cultivadas , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , Células Estromais/metabolismo
4.
J Bone Miner Res ; 21(10): 1600-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16995815

RESUMO

UNLABELLED: NeuropeptideY-, Y2 receptor (Y2)-, and leptin-deficient mice show similar anabolic action in cancellous bone but have not been assessed in cortical bone. Cortical bone mass is elevated in Y2(-/-) mice through greater osteoblast activity. In contrast, leptin deficiency results in reduced bone mass. We show opposing central regulation of cortical bone. INTRODUCTION: Treatment of osteoporosis is confounded by a lack of agents capable of stimulating the formation of bone by osteoblasts. Recently, the brain has been identified as a potent anabolic regulator of bone formation. Hypothalamic leptin or Y2 receptor signaling are known to regulate osteoblast activity in cancellous bone. However, assessment of these pathways in the structural cortical bone is critical to understanding their role in skeletal health and their potential clinical relevance to osteoporosis and its treatment. MATERIALS AND METHODS: Long bones of 16-week male ob/ob and germline and hypothalamic Y2(-/-) mice were assessed by QCT. Cortical osteoblast activity was assessed histologically. RESULTS: The femora of skeletally mature Y2(-/-) mice and of leptin-deficient ob/ob and Y2(-/-)ob/ob mice were assessed for changes in cortical osteoblast activity and bone mass. Ablation of Y2 receptors increased osteoblast activity on both endosteal and periosteal surfaces, independent of leptin, resulting in increased cortical bone mass and density in Y2(-/-) mice along the entire femur. Importantly, these changes were evident after deletion of hypothalamic Y2 receptors in adult mice, with a 5-fold elevation in periosteal bone formation. This is in marked contrast to leptin-deficient models that displayed reduced cortical mass and density. These changes were associated with substantial differences in calculated strength between the Y2(-/-) and leptin-deficient mice. CONCLUSIONS: These results indicate that the Y2-mediated anabolic pathway stimulates cortical and cancellous bone formation, whereas the leptin-mediated pathway has opposing effects in cortical and cancellous bone, diminishing the production of cortical bone. The findings from conditional hypothalamic Y2 knockout show a novel, inducible control mechanism for cortical bone formation and a potential new pathway for anabolic treatment of osteoporosis.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Osteogênese/fisiologia , Receptores de Neuropeptídeo Y/metabolismo , Animais , Fêmur/metabolismo , Fêmur/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Receptores para Leptina , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais
5.
J Biol Chem ; 281(33): 23436-44, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16785231

RESUMO

Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.


Assuntos
Envelhecimento/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Deleção de Genes , Hipotálamo/metabolismo , Orquiectomia , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/genética , Tecido Adiposo/fisiopatologia , Envelhecimento/genética , Animais , Peso Corporal/genética , Reabsorção Óssea/genética , Reabsorção Óssea/fisiopatologia , Feminino , Fêmur/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Orquiectomia/efeitos adversos , Coluna Vertebral/fisiopatologia
6.
J Bone Miner Res ; 20(10): 1851-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16160743

RESUMO

UNLABELLED: Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2-/- anabolic pathways in modulating bone formation. INTRODUCTION: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient ob/ob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. MATERIALS AND METHODS: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2-/- ob/ob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2-/- mice. Cancellous bone volume and bone cell function were assessed. RESULTS: Osteoblast activity was comparably elevated in ob/ob, Y2-/-, and Y2-/- ob/ob mice. However, greater bone resorption in ob/ob and Y2-/- ob/ob mice reduced cancellous bone volume compared with Y2-/-. Both wildtype and Y2-/- AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2-/- AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. CONCLUSIONS: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2-/- pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Osteogênese/fisiologia , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Leptina/deficiência , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Osteoblastos/metabolismo , Receptores para Leptina , Receptores de Neuropeptídeo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA