Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Nanosci ; 12(12): 3871-3882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909460

RESUMO

Drug resistance in filamentous fungus to antifungal medicines is a huge problem in biomedical applications; so, an effective strategy for treating opportunistic fungal infections is needed. Mentha piperita is a very fascinating plant to treat a variety of ailments as home remedies. Eighteen strains of Aspergillus species were used for this study which are having a unique antifungal resistance profile in presence of silver nanoparticles (AgNPs). AgNPs were prepared, using an aqueous extract of M. Piperita and characterized it by various techniques. Structural properties of AgNPs were systematically studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and Raman measurement, which emanate the single-phase fcc structure of silver nanoparticles. The spherical nature and elemental analysis of as-synthesized AgNPs were confirmed using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy, respectively. The optical study has been analyzed using UV-Vis spectroscopy and band gap was calculated as 2.51 eV, using Tauc plot. To analyze and validate the good efficacy of the disc approach, antifungal activity of AgNPs nanoparticles in different concentrations against isolates was achieved in both disc and broth microdilution. The extracellular enzymatic activity of A. fumigatus was found to explore the precise impact of nanoparticles on fungal metabolism. The antifungal efficacy of AgNPs against all fungi was highly successful in disc method. The broth approach underlined the favorable results of the disc method. It provided more precise results in determining the minimum inhibition concentration (MIC), as well as the minimum effective concentration (MEC). A. fumigatus (AM6) enzymatic activity was boosted by AgNPs. Also, ß-galactosidase, ß-glucuronidase, and ß-glucosidase are necessary enzymes whose activity has been boosted. Consequently, M. piperita AgNPs can play a major and intriguing function against resistant Aspergillus species with a significant shift in the enzymatic activity profile of fungi due to this action.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269303

RESUMO

Drug resistance of filamentous fungi to the commonly used antifungal agents is a major concern in medicine. Therefore, an effective approach to treat several opportunistic fungal infections is the need of the hour. Mentha piperita is used in home remedies to treat different disorders. Isolates of fungi were taken from hospitals in Riyadh, Saudi Arabia, and identified using molecular tools. Amphotericin B, Voriconazole, and Micafungin were applied to screen the resistance of these isolates using both disc and broth microdilution techniques. An aqueous extract of Mentha piperita was utilized to synthesize AuNPs and the nanoparticles were characterized using UV-Vis, FTIR, TEM, EDAX, and XRD. The AuNPs were tested for antifungal activity against the nosocomial fungal pathogens and the activity of extracellular enzymes of such pathogens were analyzed after treatment with AuNPs. We conclude that AuNPs synthesized using Mentha piperita do not possess especially effective antifungal properties against multi-drug resistant Aspergillus species. Five out of eighteen isolates were inhibited by AuNPs. When inhibition was observed, significant alterations in the activity profile of extracellular enzymes of the nosocomial fungi were observed.

3.
Saudi J Biol Sci ; 28(12): 7190-7201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867022

RESUMO

The diversity of natural phytochemicals represents an unlimited source for discovery and development of new drugs. Ochradenus arabicus, (family: Resedaceae) a notable medicinal plant displays a high content of flavonoid glycosides. This study investigates a possible preventative role of zinc nanoparticles biosynthesized by O. arabicus leaf extracts (OAZnO NPs) in limiting genotoxicity and cytotoxicity caused by indole acetic acid (IAA) in laboratory mice. ZnO NPs were synthesized using O. arabicus leaf extracts and characterized with UV-visible spectroscopy, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The mice were randomly distributed into the following six groups: control, OAZnO NPs treated (10 mg/kg BW), IAA treated (50 mg/kg BW); simultaneous treatment, pre-treatment, and post-treatment. Reactive oxygen species (ROS), DNA damage, chromosome aberration, and apoptosis were analyzed as toxicity endpoints. IAA exposure significantly induced production of ROS, DNA damage, apoptosis, chromosome aberrations, and micronuclei. Pre-, post-, and simultaneous treatment with OAZnO NPs ameliorated the damage caused by IAA exposure. Exposure to OAZnO NPs alone caused no toxicity for any endpoint based on comparison to controls. This study demonstrated that IAA-induced cytotoxic damage in mice could be ameliorated by treatment with OAZnO NPs. These findings require additional verification in mechanistic and in vitro studies.

4.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374682

RESUMO

Seven endophytic fungi were isolated from the tropical medicinal plant Piper longum L. After preliminary screening, Phomopsis heveicola was selected for the epigenetic activation treatments. The antibacterial, antifungal, and antioxidant potentials of crude extracts obtained from the treatments (with and without epigenetic modifiers) were analyzed in vitro. The extracts inhibited growth of the human pathogens Pseudomonas aeruginosa, Shigella sonnei, Streptococcus pyogenes, and Salmonella typhi, as well as the phytopathogens Puccinia recondita, Rhizoctonia solani, Phytophthora infestans, and Botrytis cinerea. Furthermore, DPPH-scavenging activity was higher in valproic acid treated extracts. Volatile chemicals with known biological activities (measured with GC-MS/MS), were released in the valproic acid treatment. The antimicrobial potentials of the extracts were confirmed using MRM/MS analysis. The experiments revealed a new promising endophytic fungus, P. heveicola, to be utilized in biological plant protection and in biomedical applications.


Assuntos
Anti-Infecciosos/farmacologia , Endófitos/química , Epigenômica , Compostos Fitoquímicos/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA