Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34093721

RESUMO

Diabetic ulcer is regarded as one of the most prevalent chronic diseases. The healing of these ulcers enhances with the use of herbal extracts containing wound dressings with high antibacterial property and creating a nano-sized controlled release system. In this study, new peppermint extract was incorporated in the polyurethane- (PU-) based nanofibers for diabetic wound healing. The peppermint extract was used as an herbal antimicrobial and anti-inflammatory agent. The absorption ability of the wound dressing was enhanced by addition of F127 pluronic into the polymer matrix. The release of the extract was optimized by crosslinking the extract with gelatin nanoparticles (CGN) and their eventual incorporation into the nanofibers. The release of the extract was also controlled through direct addition of the extract into the PU matrix. The results showed that the release of extract from nanofibers was continued during 144 hours. The prepared wound dressing had a maximum absorption of 410.65% and an antibacterial property of 99.9% against Staphylococcus aureus and Escherichia coli bacteria. An in vivo study indicated on significant improving in wound healing after the use of the extract as an effective compound. On day 14, the average healing rate for samples covered by conventional gauze bandage, PU/F127, PU/F/15 (contained extract), and PU/F/15/10 (contained extract and CGN) prepared with different nanoparticle concentrations of 5 and 10 was 47.1 ± 0.2, 56.4 ± 0.4, 65.14 ± 0.2, and 90.55 ± 0.15%, respectively. Histopathological studies indicated that the wound treated with the extract containing nanofibers showed a considerable inflammation reduction at day 14. Additionally, this group showed more resemblance to normal skin with a thin epidermis presence of normal rete ridges and rejuvenation of skin appendages. Neovascularization and collagen deposition were higher in wounds treated with the extract containing nanofibrous wound dressing compared to the other groups.

2.
Mater Sci Eng C Mater Biol Appl ; 114: 111039, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994005

RESUMO

In this study, new polyurethane (PU)-based nanofibers wound dressings containing Malva sylvestris extract were prepared and their effect on diabetic wound healing process was evaluated. Different amounts of carboxymethyl cellulose (CMC) were used to improve the absorption ability of wound exudates. The result showed that the usage of 20% w/w CMC in the polymer blend; and producing of nanofibers with an average diameter of 386.5 nm, led to the gradual release of the herbal compound in 85 h and bead-free morphology. Due to the antibacterial activity of wound dressing and wound healing process, the amount of 15% w/w herbal extract was selected as the optimum. For this sample, the fluid absorption was 412.31%. The extract loaded wound dressing samples showed satisfactory effects on Staphylococcus aureus and Escherichia coli bacteria. In vivo wound-healing and histological performance observations indicated that the use of the herbal extract in wound dressing improved wound healing significantly. On day 14, the average healing rate for gauze bandage, PU/CMC, and different amounts of 5, 10, 15 and 20% w/w extract containing wound dressings was 32.1 ± 0.2%, 51.4 ± 0.4%, 71 ± 0.14%, 87.64 ± 1.02%, 95.05 ± 0.24% and 95.11 ± 0.2%, respectively. Compared to the control groups, treatments with extract loaded wound dressings were effective in lowering acute and chronic inflammations. In diabetic rat wounds, collagen deposition and neovascularization were higher in wounds treated with an herbal extract containing wound dressing compared to the wounds treated with a gauze bandage and PU/CMC treated wounds. It can be suggested that this product may be considered as a good dual anti-inflammatory-antimicrobial wound dressing candidate for improving the diabetic wound healing.


Assuntos
Diabetes Mellitus , Malva , Nanofibras , Animais , Carboximetilcelulose Sódica , Extratos Vegetais/farmacologia , Poliuretanos , Ratos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA