Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 8(12): e3317, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474158

RESUMO

BACKGROUND: Paracoccin (PCN) is an N-acetylglucosamine-binding lectin from the human pathogenic fungus Paracoccidioides brasiliensis. Recombinant PCN (rPCN) induces a T helper (Th) 1 immune response when prophylactically administered to BALB/c mice, protecting them against subsequent challenge with P. brasiliensis. In this study, we investigated the therapeutic effect of rPCN in experimental paracoccidioidomycosis (PCM) and the mechanism accounting for its beneficial action. METHODOLOGY/PRINCIPAL FINDINGS: Four distinct regimens of rPCN administration were assayed to identify which was the most protective, relative to vehicle administration. In all rPCN-treated mice, pulmonary granulomas were less numerous and more compact. Moreover, fewer colony-forming units were recovered from the lungs of rPCN-treated mice. Although all therapeutic regimens of rPCN were protective, maximal efficacy was obtained with two subcutaneous injections of 0.5 µg rPCN at 3 and 10 days after infection. The rPCN treatment was also associated with higher pulmonary levels of IL-12, IFN-γ, TNF-α, nitric oxide (NO), and IL-10, without IL-4 augmentation. Encouraged by the pulmonary cytokine profile of treated mice and by the fact that in vitro rPCN-stimulated macrophages released high levels of IL-12, we investigated the interaction of rPCN with Toll-like receptors (TLRs). Using a reporter assay in transfected HEK293T cells, we verified that rPCN activated TLR2 and TLR4. The activation occurred independently of TLR2 heterodimerization with TLR1 or TLR6 and did not require the presence of the CD14 or CD36 co-receptors. The interaction between rPCN and TLR2 depended on carbohydrate recognition because it was affected by mutation of the receptor's N-glycosylation sites. The fourth TLR2 N-glycan was especially critical for the rPCN-TLR2 interaction. CONCLUSIONS/SIGNIFICANCE: Based on our results, we propose that PCN acts as a TLR agonist. PCN binds to N-glycans on TLRs, triggers regulated Th1 immunity, and exerts a therapeutic effect against P. brasiliensis infection.


Assuntos
Proteínas Fúngicas/administração & dosagem , Lectinas/administração & dosagem , Paracoccidioidomicose/prevenção & controle , Receptores Toll-Like/imunologia , Animais , Proteínas Fúngicas/imunologia , Células HEK293 , Humanos , Lectinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
2.
Biochem Biophys Res Commun ; 394(3): 448-52, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19896461

RESUMO

Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [(14)C]-L-arginine to [(14)C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent. Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [(14)C]-L-arginine to [(14)C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.


Assuntos
Arginase/análise , Mitocôndrias Hepáticas/enzimologia , Óxido Nítrico Sintase/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Cromatografia em Camada Fina/métodos , Cromatografia em Camada Fina/normas , Ratos , Reprodutibilidade dos Testes
3.
J Biol Chem ; 284(30): 19843-55, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19372221

RESUMO

Data, both for and against the presence of a mitochondrial nitric-oxide synthase (NOS) isoform, is in the refereed literature. However, irrefutable evidence has not been forthcoming. In light of this controversy, we designed studies to investigate the existence of the putative mitochondrial NOS. Using repeated differential centrifugation followed by Percoll gradient fractionation, ultrapure, never frozen rat liver mitochondria and submitochondrial particles were obtained. Following trypsin digestion and desalting, the mitochondrial samples were analyzed by nano-HPLC-coupled linear ion trap-mass spectrometry. Linear ion trap-mass spectrometry analyses of rat liver mitochondria as well as submitochondrial particles were negative for any peptide from any NOS isoform. However, recombinant neuronal NOS-derived peptides from spiked mitochondrial samples were easily detected, down to 50 fmol on column. The protein calmodulin (CaM), absolutely required for NOS activity, was absent, whereas peptides from CaM-spiked samples were detected. Also, l-[(14)C]arginine to l-[(14)C]citrulline conversion assays were negative for NOS activity. Finally, Western blot analyses of rat liver mitochondria, using NOS (neuronal or endothelial) and CaM antibodies, were negative for any NOS isoform or CaM. In conclusion, and in light of our present limits of detection, data from carefully conducted, properly controlled experiments for NOS detection, utilizing three independent yet complementary methodologies, independently as well as collectively, refute the claim that a NOS isoform exists within rat liver mitochondria.


Assuntos
Mitocôndrias Hepáticas/enzimologia , Óxido Nítrico Sintase/análise , Animais , Arginina/metabolismo , Western Blotting , Calmodulina/análise , Calmodulina/imunologia , Citrulina/metabolismo , Imunoquímica , Isoenzimas/análise , Isoenzimas/imunologia , Isoenzimas/isolamento & purificação , Masculino , Espectrometria de Massas , Mitocôndrias Hepáticas/química , NADP/metabolismo , Óxido Nítrico Sintase/imunologia , Óxido Nítrico Sintase/isolamento & purificação , Proteoma/análise , Ratos , Ratos Sprague-Dawley
4.
Eukaryot Cell ; 5(8): 1430-40, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896226

RESUMO

In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.


Assuntos
Glicoproteínas de Membrana/química , Proteínas de Protozoários/química , Trypanosoma congolense/química , Sequência de Aminoácidos , Animais , Células Cultivadas , DNA Complementar , Lipídeos/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Trypanosoma congolense/metabolismo , Moscas Tsé-Tsé/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA