Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(6): 527-535, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992605

RESUMO

While there are documented host shifts in many bacterial plant pathogens, the genetic foundation of host shifts is largely unknown. Xylella fastidiosa is a bacterial pathogen found in over 600 host plant species. Two parallel host shifts occurred-in Brazil and Italy-in which X. fastidiosa adapted to infect olive trees, whereas related strains infected coffee. Using 10 novel whole-genome sequences from an olive-infecting population in Brazil, we investigated whether these olive-infecting strains diverged from closely related coffee-infecting strains. Several single-nucleotide polymorphisms, many derived from recombination events, and gene gain and loss events separated olive-infecting strains from coffee-infecting strains in this clade. The olive-specific variation suggests that this event was a host jump with genetic isolation between coffee- and olive-infecting X. fastidiosa populations. Next, we investigated the hypothesis of genetic convergence in the host shift from coffee to olive in both populations (Brazil and Italy). Each clade had multiple mutations and gene gain and loss events unique to olive, yet no overlap between clades. Using a genome-wide association study technique, we did not find any plausible candidates for convergence. Overall, this work suggests that the two populations adapted to infect olive trees through independent genetic solutions.


Assuntos
Café , Xylella , Café/microbiologia , Estudo de Associação Genômica Ampla , Xylella/genética , Brasil , Doenças das Plantas/microbiologia
2.
Ecol Appl ; 27(6): 1827-1837, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28459124

RESUMO

The emergence rate of new plant diseases is increasing due to novel introductions, climate change, and changes in vector populations, posing risks to agricultural sustainability. Assessing and managing future disease risks depends on understanding the causes of contemporary and historical emergence events. Since the mid-1990s, potato growers in the western United States, Mexico, and Central America have experienced severe yield loss from Zebra Chip disease and have responded by increasing insecticide use to suppress populations of the insect vector, the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Despite the severe nature of Zebra Chip outbreaks, the causes of emergence remain unknown. We tested the hypotheses that (1) B. cockerelli occupancy has increased over the last century in California and (2) such increases are related to climate change, specifically warmer winters. We compiled a data set of 87,000 museum specimen occurrence records across the order Hemiptera collected between 1900 and 2014. We then analyzed changes in B. cockerelli distribution using a hierarchical occupancy model using changes in background species lists to correct for collecting effort. We found evidence that B. cockerelli occupancy has increased over the last century. However, these changes appear to be unrelated to climate changes, at least at the scale of our analysis. To the extent that species occupancy is related to abundance, our analysis provides the first quantitative support for the hypothesis that B. cockerelli population abundance has increased, but further work is needed to link B. cockerelli population dynamics to Zebra Chip epidemics. Finally, we demonstrate how this historical macro-ecological approach provides a general framework for comparative risk assessment of future pest and insect vector outbreaks.


Assuntos
Distribuição Animal , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Animais , California , Museus , Dinâmica Populacional , Crescimento Demográfico , Rhizobiaceae/fisiologia , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 106(52): 22416-20, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018775

RESUMO

Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.


Assuntos
Carboidratos/química , Interações Hospedeiro-Patógeno/fisiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Xylella/patogenicidade , Animais , Meios de Cultura , Perfilação da Expressão Gênica , Genes Bacterianos , Glucanos/química , Glucanos/metabolismo , Hemípteros/microbiologia , Pectinas/química , Pectinas/metabolismo , Fenótipo , Xylella/genética , Xylella/crescimento & desenvolvimento , Xylella/fisiologia
4.
Appl Environ Microbiol ; 74(12): 3690-701, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424531

RESUMO

Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.


Assuntos
Citrus/microbiologia , Café/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Xylella/classificação , Xylella/genética , Brasil , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Xylella/isolamento & purificação , Xylella/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA