Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544980

RESUMO

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

2.
Poult Sci ; 102(11): 103054, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729677

RESUMO

The present study aims to evaluate the antimicrobial activity (in vitro study) of olive leaves powder (OLP) and its role in improving the broiler productivity, carcass criteria, blood indices, and antioxidant activity. A total of 270 one-day-old broiler chickens were distributed into 6 treatment groups as follows: the first group: basal diet without any supplementation, while the second, third, fourth, fifth, and sixth groups: basal diet supplemented with 50, 75, 100, 125, and 150 (µg/g), respectively. The in vitro study showed that the OLP has good antibacterial activity in the concentration-dependent matter; OLP 175 µg/mL inhibited the tested bacteria in the zones range of (0.8-4 cm), Klebsiella Pneumonaie (KP) was the most resistant bacteria to OLP concentration. The antioxidant activity of OLP increased with increasing the concentration of OLP compared to ascorbic acid, where OLP 175 µg/mL scavenged 91% of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals compared to 93% scavenging activity of ascorbic acid. Broiler chickens fed diets with OLP had significantly (P < 0.05) higher body weight (BW) and body weight growth (BWG) than the control birds. The treatment with OLP significantly reduced the feed intake (FI) and feed conversion rate (FCR) when compared to control. Groups supplemented with OLP showed decreased abdominal fat deposition and a significant increase in the net carcass and breast muscle weight. OLP improved birds' blood parameters in comparison with control birds. All pathogenic bacterial numbers in caecal samples were decreased with elevating OLP levels, but the cecal Lactobacillus bacterial count was increased. In conclusion, OLP supplementation improved broiler chickens' performance, carcass traits, and blood parameters. Moreover, OLP improved birds' liver functions (reduced Alanine transaminase [ALT] and aspartate aminotransferase [AST] levels) in comparison with control. In addition, OLP promoted the antioxidant status, minimized the harmful microbial load, and increased beneficial bacterial count in the cecal contents of broilers.

3.
ACS Omega ; 8(36): 32458-32467, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720762

RESUMO

The present study aimed to assess the potential of plant growth-promoting Actinobacteria and olive solid waste (OSW) in ameliorating some biochemical and molecular parameters of wheat (Triticum aestivum) plants under the toxicity of high chromium levels in the soil. With this aim, a pot experiment was conducted, where the wheat plants were treated with a consortium of four Actinobacterium sp. (Bf treatment) and/or OSW (4% w/w) under two levels of nonstress and chromium stress [400 mg Cr(VI) per kg of soil] to estimate the photosynthetic traits, antioxidant protection machine, and detoxification activity. Both Bf and OSW treatments improved the levels of chlorophyll a (+47-98%), carotenoid (+324-566%), stomatal conductance (+17-18%), chlorophyll fluorescence (+12-28%), and photorespiratory metabolism (including +44-72% in glycolate oxidase activity, +6-72% in hydroxypyruvate reductase activity, and +5-44% in a glycine to serine ratio) in leaves of stressed plants as compared to those in the stressed control, which resulted in higher photosynthesis capacity (+18-40%) in chromium-stressed plants. These results were associated with an enhancement in the content of antioxidant metabolites (+10-117%), of direct reactive oxygen species-detoxifying enzymes (+49-94%), and of enzymatic (+40-261%) and nonenzymatic (+17-175%) components of the ascorbate-glutathione cycle in Bf- and OSW-treated plants under stress. Moreover, increments in the content of phytochelatins (+38-74%) and metallothioneins (+29-41%), as markers of detoxification activity, were recorded in the plants treated with Bf and OSW under chromium toxicity. In conclusion, this study revealed that the application of beneficial Actinobacteria and OSW as biofertilization/supplementation could represent a worthwhile consequence in improving dry matter production and enhancing plant tolerance and adaptability to chromium toxicity.

4.
Front Plant Sci ; 14: 1136961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152127

RESUMO

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

5.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050006

RESUMO

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Assuntos
Antioxidantes , Fabaceae , Ratos , Animais , Antioxidantes/química , Antocianinas/farmacologia , Antocianinas/análise , Edulcorantes , Extratos Vegetais/química , Polissacarídeos/química , Carboidratos/análise , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Fabaceae/química , Bebidas/análise
6.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080247

RESUMO

Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer's disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.


Assuntos
Inibidores da Colinesterase , Combretaceae , Herpes Simples , Herpesvirus Humano 1 , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/química , Combretaceae/química , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Metanol , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Ratos
7.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956775

RESUMO

Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 µg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 µg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.


Assuntos
Anti-Infecciosos , Mentha pulegium , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Hemólise , Hemolíticos , Quempferóis , Luteolina , Mentha pulegium/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
Sci Rep ; 11(1): 13659, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211018

RESUMO

In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 â—‹C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm-1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.


Assuntos
Proteínas de Bactérias/metabolismo , Biocombustíveis , Lipase/metabolismo , Metanol/metabolismo , Micrococcaceae/enzimologia , Óleos de Plantas/metabolismo , Biocatálise , Biocombustíveis/análise , Biocombustíveis/microbiologia , Biotecnologia/métodos , Culinária , Gorduras Insaturadas na Dieta/metabolismo , Micrococcaceae/metabolismo
9.
Food Chem ; 345: 128788, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33340896

RESUMO

Buckwheat sprouts are rich in several nutrients such as antioxidant flavonoids that have a positive impact on human health. Although there are several studies reported the positive impact of laser light on crop plants, no studies have applied laser light to enhance the nutritive values of buckwheat sprouts. Herein, the contents of health-promoting minerals, metabolites and enzymes as well as the antioxidant and anti-inflammatory activities were determined in laser-treated (He-Ne laser, 632 nm, 5 mW) common buckwheat (CBW) and tartarybuckwheat (TBW) sprouts. Out of 49 targeted minerals, vitamins, pigments and antioxidants, more than 35 parameters were significantly increased in CBW and/or TBW sprouts by laser light treatment. Also, laser light boosted the antioxidant capacity and anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activities, particularly in TBW sprouts. Accordingly, laser light could be recommended as a promising method to improve the nutritional and health-promoting values of buckwheat sprouts.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Fagopyrum/química , Flavonoides/análise , Lasers , Valor Nutritivo/efeitos da radiação , Humanos , Oxirredução/efeitos da radiação
10.
Food Chem ; 328: 127102, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32512468

RESUMO

Sprouting process enhances plant bioactive compounds. Broccoli (Brassica oleracea L) sprouts are well known for their high levels of glucosinolates (GLs), amino acids, and antioxidants, which offer outstanding biological activities with positive impacts on plant metabolism. Elevated CO2 (eCO2, 620 ppm) was applied for 9 days to further improve nutritive and health-promoting values of three cultivars of broccoli sprouts i.e., Southern star, Prominence and Monotop. eCO2 improved sprouts growth and induced GLs accumulation e.g., glucoraphanin, possibly through amino acids production e.g., high methionine and tryptophan. There were increases in myrosinase activity, which stimulated GLs hydrolysis to yield health-promoting sulforaphane. Interestingly, low levels of ineffective sulforaphane nitrile were detected and positively correlated with reduced epithiospecifier protein after eCO2 treatment. High glucoraphanin and sulforaphane levels in eCO2 treated sprouts improved the anticarcinogenic and anti-inflammatory properties of their extracts. In conclusion, eCO2 treatment enriches broccoli sprouts with health-promoting metabolites and bioactivities.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Brassica/metabolismo , Dióxido de Carbono/metabolismo , Glucosinolatos/metabolismo , Aminoácidos/metabolismo , Anti-Inflamatórios/farmacologia , Brassica/química , Brassica/crescimento & desenvolvimento , Linhagem Celular , Glucosinolatos/farmacologia , Humanos , Imidoésteres/metabolismo , Imidoésteres/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Oximas , Extratos Vegetais/farmacologia , Sulfóxidos
11.
Integr Cancer Ther ; 18: 1534735419828834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30791734

RESUMO

This nonrandomized controlled trial determined the effects of Phoenix dactylifera palm date (Ajwa) intake on the number of infections and hospitalizations associated with fever, neutropenia, and mortality of pediatric cancer patients admitted between 2008 and 2017 to King Abdulaziz University Hospital (Jeddah, Saudi Arabia). Patients were eligible to be enrolled if they fulfilled the inclusion criteria, were not allergic to Ajwa, and were not enrolled in another study. Of 200 screened patients, 56 were included and 144 were excluded. Of the 56, 26 agreed to take Ajwa, and 30 served as controls. Both groups were assessed based on infection rates, frequency of hospital admissions for fever and neutropenia, and mortality rate. Background information regarding demographics, clinicopathological data, and treatment options was documented. Supplementation of Ajwa significantly reduced hospital admissions (for fever-associated neutropenia) and infections ( P = .009 and P < .001, respectively). Off-treatment did not significantly differ between the Ajwa and control groups. The Ajwa group had a better survival rate in comparison to the non-Ajwa group (stratified log-rank P = .005), where the main cause of death of patients in the non-Ajwa group was disease progression associated with infections (77%). In summary, Ajwa intake during the standard treatment of pediatric cancer patients improved their treatment outcome.


Assuntos
Neoplasias/tratamento farmacológico , Phoeniceae/química , Antioxidantes/uso terapêutico , Criança , Feminino , Frutas/química , Hospitalização , Hospitais Universitários , Humanos , Masculino , Extratos Vegetais/uso terapêutico , Arábia Saudita , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA