Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771085

RESUMO

Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/uso terapêutico , Ligação Competitiva , Técnicas de Química Sintética , Estudos Clínicos como Assunto , Aprovação de Drogas , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ligantes , Redes e Vias Metabólicas , Modelos Moleculares , Ligação Proteica , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade
2.
Int J Biol Macromol ; 163: 2236-2247, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931835

RESUMO

Nanocomposite hydrogel film was prepared from Polyvinyl alcohol [PVA], Corn Starch [CS], Linseed oil polyol [LP], and silver nanoparticles [NP]. LP was prepared by epoxidation and hydration of Linseed oil [LO]. IR and NMR supported the insertion of hydroxyl groups in LP by epoxide ring opening reaction at epoxidized LO. Silver NP were biosynthesized using aqueous leaves' extract from locally grown Ocimum forsskaolii Benth [LEO] plant. FTIR, XRD, UV and TEM confirmed the synthesis of NP (size 30 to 39 nm). Transparent and foldable hydrogel film resulted by blending the constituents (PVA, CS, LP and NP), crosslinking by glutaraldehyde, at room temperature, and showed expansion in water, different pH solutions, biodegradation and good antibacterial and antifungal activity against tested microbes. Linseed polyol influenced the structure, morphology, hydrophilicity, improved swelling ability and thermal stability and accelerated biodegradation of hydrogel films. NP were well adhered to LP globules that were embedded in PVA/CS matrix as strung set of beads (LP globules) decorated with black pearls (spherical NP). Silver NP conferred antimicrobial behavior to hydrogel film as observed by antimicrobial screening on different microbes. The results were encouraging and showed that such hydrogel films may find prospective applications in antimicrobial packaging.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Polímeros/química , Álcool de Polivinil/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Linho/química , Óleo de Semente do Linho , Nanocompostos/química , Polímeros/síntese química , Álcool de Polivinil/síntese química , Álcool de Polivinil/farmacologia , Prata/química , Amido/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA