Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375342

RESUMO

Amphetamine is a psychostimulant drug with a high risk of toxicity and death when misused. Abuse of amphetamines is associated with an altered organic profile, which includes omega fatty acids. Low omega fatty acid levels are linked to mental disorders. Using the Comparative Toxicogenomic Database (CTD), we investigated the chemical profile of the brain in amphetamine-related fatalities and the possibility of neurotoxicity. We classified amphetamine cases as low (0-0.5 g/mL), medium (>0.5 to 1.5 g/mL), and high (>1.5 g/mL), based on amphetamine levels in brain samples. All three groups shared 1-octadecene, 1-tridecene, 2,4-di-tert-butylphenol, arachidonic acid (AA), docosahexaenoic acid (DHA), eicosane, and oleylamide. We identified chemical-disease associations using the CTD tools and predicted an association between DHA, AA and curated conditions like autistic disorder, disorders related to cocaine, Alzheimer's disease, and cognitive dysfunction. An amphetamine challenge may cause neurotoxicity in the human brain due to a decrease in omega-3 fatty acids and an increase in oxidative products. Therefore, in cases of amphetamine toxicity, a supplement therapy may be needed to prevent omega-3 fatty acid deficiency.


Assuntos
Anfetamina , Ácidos Graxos Ômega-3 , Humanos , Anfetamina/efeitos adversos , Toxicogenética , Encéfalo , Ácidos Docosa-Hexaenoicos , Ácido Araquidônico
2.
Toxics ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112608

RESUMO

Concerns regarding the possible hazards to human health have been raised by the growing usage of silica nanoparticles (SiNPs) in a variety of applications, including industrial, agricultural, and medical applications. This in vivo subchronic study was conducted to assess the following: (1) the toxicity of orally administered SiNPs on the liver, kidneys, and adrenal glands; (2) the relationship between SiNPs exposure and oxidative stress; and (3) the role of magnesium in mitigating these toxic effects. A total of 24 Sprague Dawley male adult rats were divided equally into four groups, as follows: control group, magnesium (Mg) group (50 mg/kg/d), SiNPs group (100 mg/kg/d), and SiNPs+ Mg group. Rats were treated with SiNPs by oral gavage for 90 days. The liver transaminases, serum creatinine, and cortisol levels were evaluated. The tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were measured. Additionally, the weight of the organs and the histopathological changes were examined. Our results demonstrated that SiNPs exposure caused increased weight in the kidneys and adrenal glands. Exposure to SiNPs was also associated with significant alterations in liver transaminases, serum creatinine, cortisol, MDA, and GSH. Additionally, histopathological changes were significantly reported in the liver, kidneys, and adrenal glands of SiNPs-treated rats. Notably, when we compared the control group with the treated groups with SiNPs and Mg, the results revealed that magnesium could mitigate SiNPs-induced biochemical and histopathologic changes, confirming its effective role as an antioxidant that reduced the accumulation of SiNPs in tissues, and that it returns the levels of liver transaminases, serum creatinine, cortisol, MDA, and GSH to almost normal values.

3.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746563

RESUMO

Recombinant HBsAg-loaded docosahexaenoic acid nanovesicles were successfully developed, lyophilized (LRPDNV) and characterized for their physico-chemical properties. The zetapotential (ZP) of LRPDNV was -60.4 ± 10.4 mV, and its polydispersity (PDI) was 0.201, with a % PDI of 74.8. The particle sizes of LRPDNV were 361.4 ± 48.24 z. d.nm and 298.8 ± 13.4 r.nm. The % mass (r.nm) of LRPDNV in a colloidal injectable system was 50, its mobility value was -3.417 µm cm/Vs, while the conductivity of the particles was 0.728 (mS/cm). Transmission electron microscopic (TEM) analysis showed smooth morphological characteristics of discrete spherical LRPDNV. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of LRPDNV revealed that LRPDNV is thermostable. The X-ray diffraction (XRD) studies showed a discrete crystalline structure of LRPDNV at 2θ. Nuclear magnet resonance (NMR) studies (1H-NMR and 13C-NMR spectrum showed the discrete structure of LRPDNV. The immunogenicity study was performed by antibody induction technique. The anti-HBs IgG levels were elevated in Wistar rats; the antibody induction was observed more in the product (LRPDNV) treatment group when compared to the standard vaccine group. The level of antibodies on the 14th and 30th day was 6.3 ± 0.78 U/mL and 9.24 ± 1.76 U/mL in the treatment and standard vaccine groups, respectively. Furthermore, the antibody level on the 30th day in the treatment group was 26.66 ± 0.77 U/mL, and in the standard vaccine group, the antibody level was 23.94 ± 1.62 U/mL. The LRPDNV vaccine delivery method released HBsAg sustainably from the 14th to the 30th day. The results of this study indicate the successful formulation of DHA nanovesicles which have great potential as an adjuvant system for the delivery of recombinant HBsAg protein.

4.
J Ethnopharmacol ; 292: 115200, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35306043

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis is one of the most common disabling chronic progressive autoimmune diseases affecting the adult world population. Boswellia serrata has been a known anti-inflammatory agent since ancient times. Therefore, research on Boswellia extract based on Acetyl Keto Boswellic Acid (AKBA) content evaluating its efficacy and safety is necessary. The study aimed to find a suitable Boswellia extract rich in AKBA to evaluate its bioavailability, anti-inflammatory, and anti-arthritic effect. In addition, the synergistic action of AKBA extract with methotrexate (MTX) was also assessed on an animal model. MATERIALS AND METHODS: Oral bioavailability of AKBA and the anti-inflammatory activity of 10% AKBA (5, 10, 20, 40 mg/kg b.w) was assessed and compared with 2% AKBA (40 mg/kg) and diclofenac (10 mg/kg). The effect of 10% AKBA at 20 mg/kg and 40 mg/kg was evaluated in the FCA induced arthritis animal model alone and combined with methotrexate (MTX) at 2 mg/kg b.w. Subplantar injection of FCA produced edema within a few hours with progressive arthritis by the 9th day after injection. All the treatments were initiated from the 10th day until the 45th day. Oral administration of 10% AKBA was done daily and MTX by intraperitoneal route once a week from day 10 to day 45. Paw volume, erythrocyte sedimentation rate (ESR), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), total bilirubin, oxidative markers (superoxide dismutase (SOD) levels, malondialdehyde (MDA), total proteins and liver histopathology were examined. RESULTS: 10% AKBA provided 8.48-fold, 24.22-fold, 47.36-fold, and 110.53-fold higher AUC (0-α) of AKBA at 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg, respectively compared to 2% AKBA at 40 mg/kg. Percentage paw edema inhibition of 10% AKBA at 20 mg/kg and 40 mg/kg were significantly higher than 2% regular AKBA (40 mg/kg) and diclofenac (10 mg/kg). 10% AKBA at a dose of 20 and 40 mg/kg significantly reduced ESR compared with FCA treated group. A combination of methotrexate with 10% AKBA showed the highest reduction in ESR. 10% AKBA at both dose levels significantly reduced hepatic marker enzymes and total bilirubin levels. Treatment with 10% AKBA showed a significant increase in total proteins, antioxidant enzymes and a decrease in malondialdehyde levels. Similarly, 10% AKBA protected the hepatocytes compared with the FCA and FCA + MTX treated group. 10% AKBA was capable of significantly minimizing FCA and FCA + MTX induced changes. CONCLUSION: Anti-inflammatory activity of AKBA due to inhibition of lipoxygenase (LOX) enzymes supports the use of AKBA in inflammatory disorders. Combination therapy of 10% AKBA with MTX is effective in inhibiting arthritis and circumventing hepatotoxicity produced by MTX in arthritic animals.


Assuntos
Artrite , Boswellia , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Bilirrubina , Disponibilidade Biológica , Diclofenaco , Modelos Animais de Doenças , Malondialdeído , Metotrexato/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
5.
Curr Pharm Des ; 27(13): 1579-1587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33155905

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has changed the global scenario. To date, there are no treatment or preventive options. The discovery of a new drug will take time. In addition, the new drug will have side effects, and the virus will gradually become resistant to it. Therefore, it is important to search for a drug with a natural origin. OBJECTIVE: In this review, we analyzed and summarized various ethnomedicinal plants and their bioactive compounds as a source of antiviral agents for COVID-19 prevention and treatment. METHODS: From the literature, we selected different natural compounds that can act as potential targets at low cost with broad-spectrum antiviral activity. RESULTS: Of the 200 Chinese herbal extracts tested for their possible role against SARS-CoV, Lycoris radiata, Artemisia annua, Pyrrosia lingua, and Lindera aggregate showed anti-SARS-CoV effects with the median effective concentration = 2.4-88.2 µg/mL. CONCLUSION: Ethnomedicinal herbs can be used as an alternative source of novel, promising antiviral agents that might directly or indirectly inhibit the COVID-19 progression.


Assuntos
COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
6.
Curr Pharm Biotechnol ; 21(15): 1711-1721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32988347

RESUMO

BACKGROUND: Artemisia absinthium L is an ornamental plant widespread in Saudi Arabia. Traditionally, the plant has been used in the Arabic medicine. But the scientific evidence of the bioactive compounds and their medicinal value was not yet explored widely. OBJECTIVE: The study was designed to analyse the bioactive principles and medicinal properties of Artemisia absinthium L, a traditional herb grown in southern part of Saudi Arabia. METHODS: The bioactive compounds present in Hot Methanolic Extract of the Leaves (HMEL) of Artemisia absinthium L. was explored by GC-MS analysis. The cytotoxicity effect of HMEL was determined against MCF-7 breast cancer cells ATCC and human colon cancer cells HCT 116 ATCC by performing MTT assay. Morphological changes of HMEL treated MCF-7 were observed under a phasecontrast microscope by staining the cells with neutral red. A Reaction Mixture (RM) of HMEL was prepared in Milli-Q water and antibacterial susceptibility was performed against both Gram-positive and Gram-negative bacteria. Furthermore, in vivo wound healing properties of the RM was screened in male rats and their efficacy was compared with standard povidone iodine cream. Biomarkers such as IL-1ß, IL- 6, TNF- α, caspase-9 and caspase-3 levels were determined to qualify the wound healing property. RESULTS: Epiyangambin, flavone, octadecanoic acid, 2,3-dihydroxypropyl ester, palmitic acid ß - monoglyceride, á-D-mannofuranoside, camphor, and terpineol were identified as possible compounds through GC-MS analysis. The HMEL of Artemisia absinthium L was actively inhibiting the proliferation of breast cancer cells MCF-7 ATCC at the concentration of 80.96 ± 3.94 µg/ml as IC50 value but failed to inhibit the proliferation against the treated human colon cancer cells HCT 116 cells ATCC. HMEL of Artemisia absinthium L was showing a moderate spectrum of antibacterial effect against the screened bacteria. RM showed better wound healing property than standard povidone iodine cream that modulates cytokine networks and apoptosis markers levels indicated the healing of wound. CONCLUSION: The study suggested that novel anticancer, antibacterial and immune modulatory molecules can be developed from the leaves of Artemisia absinthium L.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Artemisia absinthium/química , Metanol/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Artemisia absinthium/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Temperatura Alta , Humanos , Células MCF-7 , Masculino , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA