Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biology (Basel) ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34571704

RESUMO

The nomadic pastoral indigenous communities of the Ladakhi people share roots with Tibetan culture in terms of food, clothing, religion, festivals, and habits, and rely widely on plant resources for survival and livelihood. This survey was conducted during 2019-2021 to document the indigenous knowledge about plant resources of the Balti, Beda, and Brokpa communities of the Ladakh region, trans-Himalayas. Open- and close-ended semi-structured interviews (N = 184) and group discussions (N = 17) were used to collect the data. Quantitative data was further analyzed using various statistical tools. A total of 105 plant species belonging to 82 genera and 39 families were used as medicine, fuel wood, fragrance, oil, food, flavor, fodder, decoration, and dye. Among these, medicinal use was most prevalent, with 70% of use reports, followed by fodder and fuel wood. Leaves (27%) were the most preferred plant part used, followed by roots and flowers. The principal component analysis revealed five clusters of ethnobotanical usage, i.e., food, medicine, fuel wood, fodder, and fragrance, oil, dye, and flavor. The maximum number of plant species used was reported by the Brokpa, while the Beda reported the minimum number of plant species uses. Delphinium brunonianum, Waldheimia tomentosa, and Juniperus indica played a significant role in the cultural and religious ritual aspects, whereas Allium przewalskianum, Waldheimia tomentosa, Juniperus indica, and Hippophae rhamnoides were commonly used as a livelihood source among Ladakhi communities. The local people collected most plants (65%) for self-consumption, while the rest (35%) were sold in markets as a source of income. The sustainable utilization and management of plant resources by local people is a strategy to boost livelihoods and food security and alleviate poverty.

2.
Environ Pollut ; 280: 116890, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774539

RESUMO

Biomass of Java plum (JP) and amaltash (AT) seeds were employed to remove arsenic from synthetic wastewater, cost effectively. The prepared biomasses were characterized by FE-SEM, EDX, FTIR, XRD, and ICP techniques. Experimentation the optimization study has been carried out by using Design-software 6.0.8. Response surface methodology has been applied to design the experiments where we have used three factors and three levels Box-Behnken design (BBD). Arsenic removal ability of bio-sorbents was evaluated and optimized by varying pH, adsorbent dose concentration of arsenic in synthetic wastewater. For 2.5 mg/L arsenic concentration and 80 mg adsorbent dose at pH 8.8 Java plum seeds (JP) based bio-adsorbent removed ∼93% and amaltash seeds (AT) based bio-adsorbent removed ∼91% arsenic from synthetic wastewater. The adsorption behaviour better explained following Freundlich model (R2 = 0.99) compared to Temkin model (R2 = 0.986) for As (III) ions. The adsorption capacity was 1.45 mg g-1 and 1.42 mg g-1 for JP and AT, respectively after 80 min under optimal set of condition. The adsorption kinetics was explained by either pseudo-first order model or Elovich model.


Assuntos
Prunus domestica , Poluentes Químicos da Água , Purificação da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
3.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036127

RESUMO

Reactive oxygen species (ROS) and other free radicals cause oxidative damage in cells under biotic and abiotic stress. Endophytic microorganisms reside in the internal tissues of plants and contribute to the mitigation of such stresses by the production of antioxidant enzymes and compounds. We hypothesized that the endophytic actinobacterium Streptomyces sp. strain DBT34, which was previously demonstrated to have plant growth-promoting (PGP) and antimicrobial properties, may also have a role in protecting plants against several stresses through the production of antioxidants. The present study was designed to characterize catalase and superoxide dismutase (SOD), two enzymes involved in the detoxification of ROS, in methanolic extracts derived from six endophytic actinobacterial isolates obtained from the traditional medicinal plant Mirabilis jalapa. The results of a preliminary screen indicated that Streptomyces sp. strain DBT34 was the best overall strain and was therefore used in subsequent detailed analyses. A methanolic extract of DBT34 exhibited significant antioxidant potential in 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. The cytotoxicity of DBT34 against liver hepatocellular cells (HepG2) was also determined. Results indicated that methanolic extract of Streptomyces sp. strain DBT34 exhibited significant catalase and SOD-like activity with 158.21 U resulting in a 55.15% reduction in ROS. The IC50 values of a crude methanolic extract of strain DBT34 on DPPH radical scavenging and ABTS radical cation decolorization were 41.5 µg/mL and 47.8 µg/mL, respectively. Volatile compounds (VOC) were also detected in the methanolic extract of Streptomyces sp. strain DBT34 using GC-MS analysis to correlate their presence with bioactive potential. Treatments of rats with DBT34 extract and sitagliptin resulted in a significant (p ≤ 0.001) reduction in total cholesterol, LDL-cholesterol, and VLDL-cholesterol, relative to the vehicle control and a standard diabetic medicine. The pancreatic histoarchitecture of vehicle control rats exhibited a compact volume of isolated clusters of Langerhans cells surrounded by acinies with proper vaculation. An in-vivo study of Streptomyces sp. strain DBT34 on chickpea seedlings revealed an enhancement in its antioxidant potential as denoted by lower IC50 values for DPPH and ABTS radical scavenging activity under greenhouse conditions in relative comparison to control plants. Results of the study indicate that strain DBT34 provides a defense mechanism to its host through the production of antioxidant therapeutic agents that mitigate ROS in hosts subjected to biotic and abiotic stresses.


Assuntos
Produtos Biológicos/uso terapêutico , Catalase/metabolismo , Mirabilis/microbiologia , Streptomyces/química , Superóxido Dismutase/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Endófitos , Flavonoides/química , Sequestradores de Radicais Livres , Proteínas Fúngicas/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Filogenia , Ratos , Streptomyces/enzimologia , Streptomyces/genética
4.
Pestic Biochem Physiol ; 168: 104640, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711773

RESUMO

In the recent past, many agrochemicals have been used to control pests, but many of these fail due to the development of resistance. Many researchers, therefore, concentrate on developing new pesticide formulations from natural resources (plants/microorganism). In the present study, different extracts from Catharanthus roseus (Madagascar periwinkle) was evaluated for their ovicidal and oviposition deterrent activities against Earias vittella (spiny bollworm). Among the tested extracts DCM (Dichloromethane) extract showed highest ovicidal activity (70.47%) and oviposition deterrent activity (75.41%) against E. vittella. Based on this biological activity, DCM extract was fractionated and isolated 7 fractions; all of these were evaluated for their ovicidal and oviposition deterrent activity against E. vittella. Maximum ovicidal and oviposition deterrent activity was recorded in fraction 5, followed by the 7th fraction. Stearic acid was isolated from fraction 5 and was subjected to nanoparticle synthesis. This nanoparticle was tested for its effects against E. vittella. It was found to exhibit 100% oviposition deterrent and 95% ovicidal activities against E. vittella, and also reduced the protein (53.63%), glutothionine esterase (39.16%), and esterase activity (45.25%) of the treated larvae. The synthesized nanoparticle was subjected to ecotoxicology evaluation against Daphnia sp. (water fleas) and Cyprinus carpio (common carp). The nanoparticle showed >100 mg/L for EC50 and LC50 against both aquatic organisms. Based on the result, it could be studied further to develop the ecofriendly formulation with stability studies for agriculture pest management.


Assuntos
Carpas , Catharanthus , Inseticidas , Nanopartículas Metálicas , Animais , Ecotoxicologia , Feminino , Larva , Oviposição , Extratos Vegetais , Folhas de Planta , Prata , Ácidos Esteáricos
5.
Curr Alzheimer Res ; 16(13): 1230-1244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31797759

RESUMO

BACKGROUND: Insulin resistance causes decreased uptake of glucose which promotes the susceptibility of type 2 associated neurological impairments. METHODS: The study was aimed to evaluate the inhibition potential of the ethanolic extract of Prosopis cineraria (EPC) pods against DPP-4 and cholinesterase enzymes by in-vitro, in-vivo and in-silico assessments. The present study consists of in vivo studies on a diabetes-induced rat model by HOMA (Homeostasis model assessment) and related parameters, in vitro studies through the DPP-4 enzyme assay and cholinesterase assays using Ellman's reaction. The in-silico studies were conducted by the molecular docking of Cinerin C with targeted enzymes. The phytochemical characterization of the extract was demonstrated through LCMS studies. The antioxidant studies on the extract were performed by FRAP and TEAC assays. RESULTS: The extract showed 64.8% maximum inhibition of DPP-4, 34.91% inhibition of AChE and 74.35% inhibition of BuChE. The antioxidant capacity of the extract was observed to be 847.81±16.25µM Fe2+ equivalent in the FRAP assay and 0.40 ± 0.08 mmol/l of Trolox equivalent in the TEAC assay. The in vivo study showed competent glycaemic control against significant HOMA IR (1.5), HOMA % ß (26.5) and HOMA % S (68.8) as well as pancreatic cell mass proliferation. The insilico analysis also revealed positive interactions of Cinerin C with targeted enzymes (DPP4 and cholinesterase). CONCLUSION: It can be concluded that the phytoconstituents of Prosopis cineraria pod extract can be significantly considered in neuropharmacology to resolve insulin resistance-induced neurological complications as it showed inhibition against DPP-4, AChE and BuChE target enzymes.


Assuntos
Inibidores da Colinesterase/farmacologia , Diabetes Mellitus Experimental/complicações , Inibidores da Dipeptidil Peptidase IV/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Extratos Vegetais/farmacologia , Prosopis , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Etanol/química , Simulação de Acoplamento Molecular , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Ratos
6.
Saudi J Biol Sci ; 26(7): 1856-1864, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762668

RESUMO

Experiments were conducted to investigate the role of silicon (Si, 2 mM potassium silicate - K2SiO3) in ameliorating the salinity (200 mM NaCl) triggered growth retardation, photosynthetic inhibition and the oxidative damage in Talh trees (Acacia gerrardii Benth). Salinity stress reduced length and dry biomass accumulation of root and shoot which were significantly improved by Si supplementation. Application of Si enhanced the synthesis of photosynthetic pigments including chlorophyll a, chlorophyll b, total chlorophylls and carotenoids resulting in greater photosynthetic activity measured in terms of net CO2 assimilation. Stomatal conductance and transpiration rate were declined due to NaCl treatment and supplementation of Si ameliorated the negative impact of NaCl on these attributes and was significantly improved when applied to normal grown plants. Further, lipid peroxidation was more in NaCl stressed plants without Si as compared to those supplemented with Si. Si protected Talh trees from NaCl induced oxidative damage by improving the activity of antioxidant enzymes (SOD, POD, CAT, APX and GR) and the content of ascorbic acid. Accumulation of compatible osmolytes including proline and glycine betaine was increased due to Si supplementation leading to improved growth under saline conditions in addition Si supplementation mitigated the deleterious effects of NaCl on flavonoid content. More importantly Si supplementation prevented excess uptake of Na and also protected the ill effects of excess Na on the uptake and accumulation of K and Ca resulting in significant decline in Na/K ratio. In conclusion, Si mitigates the negative effects of NaCl in A. gerrardii by modifying nutrient uptake, osmolytes accumulation and up-regulating antioxidant system.

7.
Saudi J Biol Sci ; 26(5): 985-988, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303829

RESUMO

Diabetes is a chronic, lifelong condition due to inadequate production of insulin or the cells does not properly respond it. Recently, the significance and effectiveness of herbal drugs associated with diabetes has emerged. The aim of the present study was to determine the anti-diabetic effects of Terminalia catappa L. leaves on streptozotocin (STZ)-treated rats. Two different concentrations of ethanolic leaf extract (300 and 500 mg/kg) of T. catappa were used to treat diabetic rats, and biochemical parameters were analyzed in blood samples. The results of herbal treatments were compared with the standard drug, glibenclamide. The ethanol extract (500 mg/kg) had significant anti-diabetic activity by altering blood glucose, glycosylated hemoglobin, liver glycogen, glucose 6-phosphatase, fructose 1,6-bisphosphatase, glucokinase, aspartate transaminase, alanine transaminase, alkaline phosphatase, urea, uric acid and creatinine levels while increasing insulin levels. Thus, the present study suggests that the supplementation of the diabetic patients with T. catappa leaves can lead to recovery from diabetic effects.

8.
Saudi J Biol Sci ; 26(3): 464-468, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899159

RESUMO

Laccases (EC 1.10.3.2) are a class of multi-copper oxidases that have industrial value. In the present study, forty-five isolates of wild mushrooms were screened for laccase production. Eight of the isolates exhibited exploitable levels of substrate oxidation capacity. Isolate BPSM10 exhibited the highest laccase activity of 103.50 U/ml. Internal Transcribed Spacer (ITS) rRNA gene sequencing was used to identify BPSM10 as Pleurotus pulmonarius. The response of BPSM10 to two nutritional media supplemented with various inducers was characterized and the results indicated that Malt Extract Broth (MEB) supplemented with Xylidine increased laccase production by 2.8× (349.5 U/ml) relative to the control (122 U/ml), while Potato Dextrose Broth (PDB) supplemented with xylidine increased laccase production by 1.9× (286 U/ml). BPSM10 has the ability to decolorize seven synthetic dyes in a liquid medium. Maximum decolorization was observed of malachite green (MG); exhibiting 68.6% decolorization at 100 mg/L. Fourier-transform infrared spectroscopy (FTIR) was employed to confirm the decolorization capacity. The present study indicates that P. pulmonarius BPSM10 has the potential to be used as a potent alternative biosorbent for the removal of synthetic dyes from aqueous solutions, especially in the detoxification of polluted water.

9.
Saudi J Biol Sci ; 25(6): 1115-1121, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30174510

RESUMO

Obesity is a global health burden due to lifestyle modifications that have a strong association with a high incidence of diseases, such as dyslipidemia, glucose intolerance, nonalcoholic fatty liver diseases, diabetes, hypertension, coronary heart disease and cancer. The aim of the present study is to investigate the protective effects of a Macrotyloma uniflurom formulation (MUF) against high-fat diet (HFD)-induced oxidative stress and inflammation in obese rats. Male albino Wistar rats were fed a high-fat diet for 6 weeks to facilitate fat-induced oxidative stress and were simultaneously treated with MUF (400 mg/kg b.w.) through oral gavage from the third week onwards during the treatment phase. At the end of the experimental period, hepatic and oxidative stress markers were examined. The mRNA expression levels of inflammatory marker genes [Tumor Necrosis Factor-α (TNF-α) and Interleukin-6 (IL-6)] were also determined by reverse transcriptase-polymerase chain reaction in liver tissue. Hepatic marker enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and gamma glutamyl transferase) and lipid peroxidation markers (Thiobarbituric acid reactive substances and LOOH) were significantly increased in HFD-fed rats, and administration of MUF resulted in remarkable suppression of these markers. Administration of MUF to HFD rats enhanced the activity of enzymatic (superoxide dismutase, catalase and glutathione peroxidase and non-enzymatic (vitamin E, vitamin C and glutathione) antioxidants compared to HFD-fed rats. An anti-inflammatory effect of MUF was demonstrated by attenuating gene expression of TNF-α and IL-6. Therefore, the results of this study indicate that MUF could be a strong herbal therapeutic alternative for the protection of the liver as well as prevention and treatment of high-fat-induced oxidative stress and inflammation.

10.
Ecotoxicol Environ Saf ; 158: 131-138, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29677595

RESUMO

Weed control is a challenging event during crop cultivation. Integrated management, including the application of bioherbicides, is an emerging method for weed control in sustainable agriculture. Plant extracts, allelochemicals and some microbes are utilized as bioherbicides to control weed populations. Bioherbicides based on plants and microbes inhibit the germination and growth of weeds; however,few studies conducted in weed physiology. This review ascribes the current knowledge of the physiological changes in weeds that occur during the exposure to bioherbicides. Plant extracts or metabolites are absorbed by weed seeds, which initiates damage to the cell membrane, DNA, mitosis, amylase activity and other biochemical processes and delays or inhibits seed germination. The growth of weeds is also retarded due to low rates of root-cell division, nutrient uptake, photosynthetic pigment synthesis, and plant growth hormone synthesis, while the productions of reactive oxygen species (ROS) and stress-mediated hormones increase, including irregular antioxidant activity. However, lytic enzymes and toxic substances secreted from microbes degrade the weed seed coat and utilize the endosperm for survival, which inhibits seed germination. The microbes grow through the intercellular spaces to reach the root core, and the deposition of toxins in the cells affects cell division and cellular functions. Some of the metabolites of deleterious microbes cause disease, necrosis and chlorosis,which inhibit the germination and growth of weed seeds by suppressing photosynthesis and gibberellin activities and enhancing ROS, abscisic acid and ethylene. This review explains the effects of bioherbicides (derived from plants and microbes) on weed-plant physiology to elucidate their modes of action.


Assuntos
Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas , Germinação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Daninhas/embriologia , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Sementes/efeitos dos fármacos
11.
Biomed Res Int ; 2018: 6870139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29516007

RESUMO

Arnebia benthamii of the family Boraginaceae is a critically endangered nonendemic plant of the Kashmir Himalayas and is used to treat a number of human diseases. The current study was based on developing an in vitro micropropagation protocol vis-à-vis induction of various secondary metabolites under in vitro conditions for the possible biological activity. A tissue culture protocol was developed for A. benthamii for the first time in the Himalayan region using varied combinations and proper media formulations, including various adjuvants: Murashige and Skoog (MS) media, growth hormones, sugars, agar, and so forth. The influence of different media combinations was estimated, and the MS + thidiazuron (TDZ) + indole 3-acetic acid (IAA) combination favors a higher regeneration potential. The higher amounts of chemical constituents were also recorded on the same treatment. The in vitro plant samples also showed a noteworthy effect of scavenging of hydroxyl radicals vis-à-vis protection from oxidative DNA damage. The in vitro raised plants are good candidates for the development of antioxidant molecules.


Assuntos
Antioxidantes/química , Boraginaceae/química , Dano ao DNA/efeitos dos fármacos , Composição de Medicamentos , Compostos Fitoquímicos/farmacologia , Animais , Antioxidantes/uso terapêutico , Bovinos , DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacologia , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Compostos Fitoquímicos/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/química , Brotos de Planta/química , Plantas Medicinais/química , Regeneração/efeitos dos fármacos , Tiadiazóis/química , Tiadiazóis/farmacologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA